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1 Introduction

The study of topological strings on Calabi-Yau manifolds has been the topic of intense

research for many years now. There are a number of conjectures relating the topolog-

ical string amplitudes with various generating functions of interest to both physicists

and mathematicians.

The Calabi-Yau threefold (CY3-fold) X gives rise to the corresponding compactified

theory via M-theory compactification. In this way gauge theories with certain gauge groups

and matter content can be geometrically engineered using CY3-folds [1, 2]. The topological

string partition function on such spaces is expected to be related to instanton sums in gauge

theories. This conjecture has been sharpened, thanks to the work of Nekrasov [3], which

provides the tool to directly compute the partition function of 5D supersymmetric gauge

theory on C2 × S1.

On the other hand, using the topological vertex formalism [4, 5] the partition function

of topological string can be evaluated on such backgrounds. In particular, for U(N) gauge

theories with and without hypermultiplets, the equivalence of gauge theory and the corre-

sponding topological string partition function has been proven using the topological vertex

formalism [6–9]. However, as was noted in [8], the instanton calculus [3] which was used to

calculate the gauge theory partition function has more refined information. Recall that on

the gauge theory side the partition function is calculated using localization in equivariant

K-theory [10, 11] with respect to an r + 2 dimensional torus T2 × K, where K is the r

dimensional maximal torus of the gauge group and T2 acts on the C2,

T2 : (z1, z2) 7→ (eiǫ1z1, e
iǫ2z2) . (1.1)

The T2 action on C2 lifts to an action on the instanton moduli space such that the

fixed points are labeled by the colored partitions (Young diagrams) of certain instanton

charge [12].

The gauge theory partition function is a function of two equivariant parameters ǫ1,2.

For ǫ1 = −ǫ2 = gs, the gauge theory partition function reduces to the A-model topological

string partition function with genus parameter gs [6, 7]. In this limit (ǫ1 + ǫ2 = 0), the

topological vertex formalism can be used to calculate the partition function from the toric

geometry of the corresponding CY3-fold. However, the usual topological vertex formalism,

needs to be extended to deal with the case ǫ1 + ǫ2 6= 0.

Recall that the topological string partition function is the generating function of the

Gromov-Witten invariants. Therefore a natural question to ask is whether the partition

function with ǫ1 + ǫ2 6= 0 is the generating function of some invariants more refined than

– 1 –
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the Gromov-Witten invariants. The Gopakumar-Vafa (GV) reformulation [13] of the topo-

logical string amplitudes suggests such a possibility which was explored in [8]. Given a

CY3-fold X, the M-theory compactification on X gives (in an appropriate limit) a 5D

supersymmetric gauge theory with eight supercharges. The BPS particles in the 5D theory

have a geometric origin as the M2-branes wrapped on holomorphic curves in X. The mass

of such a particle coming from the holomorphic curve C ∈ H2(X,Z) is given by
∫
C ω,

where ω is the Kähler form on X. The spin of these particles is classified by the little

group of massive particles which in 5D is SO(4) ≃ SU(2)L × SU(2)R. Compactifying on a

circle to get Type IIA on X, the wrapped M2-branes with some momentum in the compact

direction become the bound states of D2-branes with D0-branes. The number of particles

with charge C ∈ H2(X,Z) and SU(2)L × SU(2)R spin (jL, jR), N
(jL,jR)
C , is equal to the

number of the cohomology classes of the moduli space of D2-brane wrapped on C. For

generic CY3-folds, N
(jL,jR)
C is not an invariant and can change as we change the complex

structure. But N jL
C =

∑
jR

(−1)2jR(2jR + 1)N
(jL,jR)
C , which sums over all jR’s with alter-

nating signs, remains invariant. For the case of non-compact toric CY3-folds, there are

no complex structure deformations. Therefore, one would expect no jumps in the N
(jL,jR)
C

degeneracies, and so one would hope to be able to compute these as well.

Because the D-brane has a U(1) gauge field living on its worldvolume, the moduli space

of supersymmetric configurations includes not only the curve moduli but also the moduli

of the flat connections on the curve coming from the gauge field. Since the moduli space

of flat connections on a smooth curve of genus g is T 2g, the moduli space of the D-brane

is a T 2g fibration over the moduli space of the curve. The total space is a Kähler manifold

and the Lefschetz action by the Kähler class is the diagonal SU(2)D ⊂ SU(2)L × SU(2)R
action on the moduli space. The SU(2)L× SU(2)R action on the moduli space is such that

SU(2)L acts on the fiber direction and the SU(2)R acts in the base direction.

The topological string partition function is the generating function of the invari-

ants N jL
C ,

Z(ω, gs) := exp


∑

g≥0

g2g−2
s Fg(ω)


 (1.2)

=
∏

C∈H2(X,Z)

∏

jL

+jL∏

kL=−jL

∞∏

m=0

(
1− q2 k+m+1QC

)(−1)2jL+1(m+1)N
jL
C
,

where q = eigs and QC = e−
R
C ω. The parameters Q give the charge under H2(X,Z)

whereas the parameter q couples with the SU(2)L spin.

As mentioned before, for Calabi-Yau manifolds which do not admit any complex struc-

ture deformations, such as non-compact toric threefolds, the multiplicities N
(jL,jR)
C them-

selves are invariants. Using these multiplicities we can define a refined topological string

– 2 –
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partition function with a product structure similar to the one given above [8],

Z(ω, q, t):=
∏

C∈H2(X,Z)

∏

jL,jR

+jL∏

kL=−jL

+jR∏

kR=−jR

∞∏

m1,m2=1

(
1−tkL+kR+m1−

1
2 qkL−kR+m2−

1
2QC

)M
(jL,jR)

C
,

(1.3)

M
(jL,jR)
C = (−1)2(jL+jR)+1N

(jL,jR)
C ,

where the parameters
√
q t and

√
t
q couple with SU(2)L and SU(2)R spin, respectively.

It was argued in [8] that for Calabi-Yau manifolds which give rise to N = 2 super-

symmetric gauge theories via geometric engineering, the refined topological string parti-

tion function is equal to the partition function of the compactified 5D gauge theory, i.e.,

the K-theoretic version of the Nekrasov’s instanton partition functions [10, 11, 14] with

q = eiǫ1, t = e−iǫ2.

The topological vertex formalism [4] provides a powerful method to calculate the topo-

logical string partition function for non-compact toric CY3-folds. A similar formalism to

calculate the refined partition functions will be very interesting providing a refinement

of the Gromov-Witten and Donaldson-Thomas theories of toric CY3-folds. The purpose

of this paper is to develop such a formalism. We will define a refined topological vertex

Cλ µ ν(t, q) which now depends on one extra parameter compared to the ordinary topo-

logical vertex, where together with the usual gluing algorithm for toric CY3-folds, gives

the refined topological string partition. However, the refined vertex can be used to define

the refined invariants only when the toric Calabi-Yau threefold is made of vertices, all of

which contain a fixed locus (p, q) of vanishing cycle in T 2 (which is a subset of the T 3

fibration of toric geometries). This implies that we can compute the refined topological

string amplitudes only for toric threefolds which are somewhat special. However, one can

also obtain a generic toric case from the refined vertex by using analytic continuation and

doing flops on the vertices. This in particular means that the refined vertex is not cyclically

symmetric as the usual topological vertex. The toric CY3-folds for which the refined vertex

works are exactly those which give rise to gauge theories via geometric engineering. This

implies that the refined vertex contains no more information than the K-theoretic version

of the instanton partition functions. However, the refined vertex provides a combinatorial

interpretation of the instanton partitions functions. Since the refined vertex is not cycli-

cally symmetric a certain choice of direction in the toric diagram of the CY3-fold has to

be made.

The fact that the topological vertex has a combinatorial interpretation in terms of

counting certain 3D partitions with fixed asymptotes is a well known fact [15]. As a

guiding principal in formulating the refined topological vertex we will demand a similar

combinatorial interpretation in terms of 3D partitions for the refined vertex.1

This paper is organized as follows. In section 2, we will review GV formulation of the

topological string amplitudes and their computation using the topological vertex formalism.

In section 3, we propose the refined topological vertex. In section 4, we discuss the con-

1For another attempt at defining a refined topological vertex see [16].
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nection between the refined vertex and stacks of branes, and motivate the gluing rules for

the refined vertex. In section 5, we will calculate the refined partition functions for certain

geometries using the refined vertex. In particular, we show how one recovers Nekrasov’s

results using the refined vertex. We also compute the degeneracy of the BPS states in

these geometries and explain the SU(2)L × SU(2)R content of the states. In appendix A,

we will give the complete derivation of the refined vertex in terms of 3D partitions. In

appendix B, we will show that the refined partition function of O(−1)⊕O(−1) 7→ P1 can

be obtained by appropriately weighting the contribution of the holomorphic maps to the

two fixed points of the geometry. We will also show that for C3 by appropriately weighting

the contribution of the maps to the torus invariant fixed point gives a generalization of the

MacMahon function which also has a combinatorial interpretation.

2 GV formulation and topological vertex

In this section, we will briefly review the Gopakumar-Vafa reformulation of the topological

string amplitudes and their calculation using the topological vertex.

2.1 Topological string amplitudes and GV reformulation

The topological string amplitudes Fg arise in the A-twisted topological theory as integrals

over the genus g moduli space of Riemann surfaces and are related to the generating

functions of the genus g Gromov-Witten invariants. The general form of these amplitudes

is given by

F0(ω) =
1

3!

∫

X
ω ∧ ω ∧ ω +

∑

C∈H2(X,Z)

N 0
C e−

R
C ω , (2.1)

F1(ω) = − 1

24

∫

X
ω ∧ c2(X) +

∑

C∈H2(X,Z)

N 1
C e

−
R
C

ω,

Fg≥2(ω) = (−1)g
χ(X)

2

∫

Mg

λ3
g−1 +

∑

C∈H2(X,Z)

N g
C e−

R
C ω ,

where ω is the Kähler form, N g
C is the genus g Gromov-Witten invariant of C, Mg is the

moduli space of genus g Riemann surfaces and λg−1 is the gth Chern class of the Hodge

bundle over Mg (see appendix B). The topological string amplitudes can be compactly

organized into the generating function, the topological string partition function

Z(ω, gs) = exp




∞∑

g=0

g2g−2
s Fg(ω)


 . (2.2)

From the worldsheet perspective, the genus g amplitude, Fg, is the generating function

of the “number” of maps from a genus g Riemann surface to CY3-fold X. However, the

target space viewpoint provides a more physical interpretation of the generating function

F (ω, gs) [13]. We will briefly review this interpretation since it is crucial in understanding

the refined partition functions. Recall that in M-theory compactification on CY3-fold X

– 4 –
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we get a 5D field theory with eight supercharges. The particles in this theory come from

quantization of the moduli space of wrapped M2-branes on various 2-cycles of X. These

particles carry SU(2)L×SU(2)R quantum numbers where SU(2)L×SU(2)R = SO(4) is the

little group of massive particles in 5D. If we compactify one direction, then the particles can

be interpreted as wrapped D2-branes and the Kaluza-Klein modes as bound D0-branes.

These charged particles when integrated out give rise to the F-terms in the effective action.

The contribution of a particle of mass m and in representation R of the SU(2)L × SU(2)R
to F is given by

S = log det(∆ +m2 + 2e σLF) =

∫ ∞

ǫ

ds

s

TrR(−1)σL+σRe−sm2
e−2seσLF

(2 sinh(seF/2))2 , (2.3)

where σL is the Cartan of SU(2)L and arises because the graviphoton field strength is

self-dual. e is the charge of the particle, and is equal to its mass and we identify the

graviphoton field strength F = gs. The mass of the particle is given by the area of the

curve on which the D2-brane is wrapped. An extra subtlety arises due to D0-branes. In

the lift to M-theory, we see that a wrapped M2-brane comes with momentum in the circle

direction, and therefore, if we denote the mass of the M2-brane wrapping a curve class

C ∈ H2(X,Z) by TC then the mass of the M2-brane with momentum n is given by taking

TC to TC + 2πin/gs. Let us denote by N
(jL,jR)
C the number of BPS states coming from

an M2-brane wrapped on the holomorphic curve C, and the left-right spin content under

SU(2)L × SU(2)R given by (jL, jR). Then the total contribution coming from all particles

is obtained by summing over the momentum, the holomorphic curves and the left-right

spin content,

F =
∑

C∈H2(X,Z)

∑

n∈Z

∑

jL,jR

N
(jL,jR)
C

∫ ∞

ǫ

ds

s

Tr(jL,jR)(−1)σL+σRe−sTC−2πine−2sσLλs

(2 sinh(sλs/2))2
(2.4)

=
∑

C∈H2(X,Z)

∞∑

k=1

∑

jL,jR

N
(jL,jR)
C e−kTC

Tr(jL,jR)(−1)σL+σRe−2kλsσL

k(2 sinh(kλs/2))2

=
∑

C∈H2(X,Z)

∞∑

k=1

∑

jL

N jL
C e−kTC

TrjL
(−1)σLe−2kλsσL

k(2 sinh(kλs/2))2
,

whereN jL
C =

∑

jR

N
(jL,jR)
C (−1)2jR(2jR + 1) .

In terms of these integers N jL
C one can write F as

F =
∑

C∈H2(X,Z)

∞∑

k=1

∑

jL

(−1)2jLN jL
C e−kTC

(
q−2jLk + · · ·+ q+2jLk

k(qk/2 − q−k/2)2

)
, q = eigs . (2.5)

If we turn on a constant graviphoton field strength which is not self-dual F = F1 dx
1 ∧

dx2 +F2 dx
3∧dx4, then we can write the contribution that comes from integrating out the

particle in representation R of SU(2)L × SU(2)R as

S :=

∫ ∞

ǫ

ds

s

TrR(−1)σL+σRe−sm2
e−2se(σLF++σRF−)

(2 sinh(seF1/2))(−2 sinh(seF2/2))
. (2.6)

– 5 –
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Summing over the contributions from all particles as before we get

F (ω, t, q) =

∑

C∈H2(X,Z)

∞∑

n=1

∑

jL,jR

(−1)2jL+2jRN
(jL,jR)
C

(
(t q)−njL +· · ·+(t q)njL

)(
( t

q )−njR +· · ·+( t
q )

njR

)

n(tn/2 − t−n/2)(qn/2 − q−n/2)
e−nTC ,

(2.7)

where q = eF1 , t = eF2 . The integers N
(jL,jR)
C give the degeneracy of particles with spin

content (jL, jR), and charge C and are the number of cohomology classes with spin (jL, jR)

of the moduli space of a D-brane wrapped on a holomorphic curve in the class C [13].

As an example, consider the local P1 × P1 which we will denote by X. M-theory

compactification on S1 × X gives SU(2) gauge theory with eight supercharges. In this

case, the gauge theory partition function was calculated in [3]. As we will show in the last

section this partition function can be obtained from the refined topological vertex as well

and is given by2

Z(Qb, Qf , t, q) =
∑

ν1,ν2

Q
|ν1|+|ν2|
b Z(ν1, ν2;Qf , t, q) (2.8)

Z(ν1, ν2;Q, t, q):=

(
t

q

)|ν1|+|ν2|

q||ν
t
1||

2
t||ν2||2Z̃νt

1
(t, q)Z̃ν1(q, t)Z̃νt

2
(t, q)Z̃ν2(q, t)G(ν1, ν2, Q, t, q)

G(ν1, ν2, Q, t, q) =
∞∏

i,j=1

(1−Qqj−1ti)(1 −Q (q/t) qj−1ti)

(1−Qq−νt
2,i+j−1 t−ν1,j+i)(1 −Q (q/t) q−νt

2,i+j−1 t−ν1,j+i)

Z̃ν(t, a) =
∏

(i,j)∈ ν

(1− ta(i,j)+1qℓ(i,j))−1 , a(i, j) = νt
j − i , ℓ(i, j) = νi − j , (2.9)

where −log(Qb,f ) = Tb,f are the Kähler parameters associated with the base and the

fiber P1’s.

We can use the above partition function to calculate the BPS degeneracies of various

states corresponding to charge C ∈ H2(X,Z). For example, consider the curve 2B + 2F ,

the canonical class of the P1×P1. This is a genus one curve and therefore the corresponding

moduli space will admit non-trivial SU(2)L action. The spin content can be extracted from

the refined partition function and is given by

∑

jL,jR

N
(jL,jR)
2B+2F (jL, jR) =

(
1

2
, 4

)
⊕
(

0,
7

2

)
⊕
(

0,
5

2

)
. (2.10)

To see that this is the correct result note that the moduli space of 2B + 2F together with

its Jacobian is given by a P7 bundle over P1 × P1: pick a point in P1 × P1, the moduli

space of curves passing through that point in the class 2B + 2F is given by P7. Thus the

diagonal SU(2)L × SU(2)R action which is just the Lefshetz action is given by
(

1

2

)
⊗
(

1

2

)
⊗
(

7

2

)
=

(
5

2

)
⊕ 2

(
7

2

)
⊕
(

9

2

)
. (2.11)

2ν1,2 are 2D partitions, νt is the transpose partition and ||ν||2 =
P

i ν2
i .

– 6 –
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L1

L3

L2

Figure 1. The holomorphic maps wrapping the disks along the degeneration loci with boundaries

on the Lagrangian branes.

Note that since 2B+2F is a genus one curve, the corresponding Jacobian is also genus one,

and therefore jL can only be 0 or 1
2 . From this restriction on jL and the above diagonal

action, we see that the unique left-right spin content is given by

(
1

2
, 4

)
⊕
(

0,
7

2

)
⊕
(

0,
5

2

)
, (2.12)

exactly as predicted by the partition function calculation

2.2 Partition function from the topological vertex

The topological vertex formalism [4] completely solves the problem of calculating the topo-

logical string partitions for toric CY3-folds. Consider the topological A-model with a toric

non-compact Calabi-Yau manifold X as its target space. The amplitude of this model is

the sum over the holomorphic maps from a Riemann surface Σg of genus g to the target

Calabi-Yau manifold X where each term is weighted by the area of the surface in X. One

can use the so-called toric diagrams (or web diagrams) to encode the geometry of the target

space as a tri-valent graph on the plane. These diagrams show the degeneration loci of

the toric action on X, i.e., along each edge of the web one of the 1-cycles of the fiber T2

shrinks leaving the dual cycle S1. The basic idea behind the topological vertex is to divide

the corresponding toric diagram of X into tri-valent vertices, which, from physics point of

view, should be considered as placing Lagrangian D-brane/anti-D-brane pairs to “cut” X.

Each tri-valent vertex corresponds to a C3 patch.

The separation of the target space into C3 patches results in cuts in the holomorphic

maps from the worldsheet to the target space as well. In other words, one ends up with

Riemann surfaces (not to be confused with Σg) with boundaries over the point on the

edge where the cut is made. The boundaries live on stack of D-branes (or anti-D-branes)

along the three edges of the web. Closed string amplitudes on a given toric Calabi-Yau

manifold are obtained by an appropriate gluing procedure. The rules to calculate the

topological string amplitude on general toric, non-compact Calabi-Yau manifolds, given

the toric diagram are the following:

– 7 –
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• After dividing the toric diagram into vertices, associate each edge described by an

integer vector vi with a representation µi.

• The orientation of the vectors (vi, vj , vk) describing the degeneration loci is important

in order to write down correctly the associated vertex to each patch: if all vectors

vi are incoming then Cµiµjµk
is the correct factor, otherwise we replace the partition

with its transpose µt for any outgoing edge.

• Once we have set up all vertices and the associated factors Cµiµjµk
, we can glue them

along their common edges. Assume that two vertices have the same vi, we can take

one of the vi’s to be incoming on one vertex and outgoing on the other one. Then

“gluing” turns out to be the following summation

∑

µi

(−1)(ni+1)ℓ(µi)q−ni
κ(µi)

2 e−ℓ(µi)tiCµjµkµiCµt
iµ

′
jµ′

k
(2.13)

with the integer ni = |v′k ∧ vk|. The appearance of this factor signals the equality of

the framing along an edge on both vertices.

• The Kähler parameter Ti associated to an edge described by vi = (pi, qi) is given by

Ti = xi/
√
p2

i + q2i where xi is the length in the plane.

• The partition µ along any non-compact direction is a trivial one and denoted by “∅”.

A useful representation of the vertex is given using the skew-Schur functions [15],

Cλ µ ν(q) = q
κ(µ)

2 sνt(q−ρ)
∑

η

sλt/η(q
−ν−ρ)sµ/η(q

−νt−ρ) , (2.14)

where q−ν−ρ = {q−ν1+1/2, q−ν2+3/2, q−ν3+5/2, · · · }, and sµ/η(x) is the skew-Schur function3

defined, using the Littlewood-Richardson coefficients cµη λ, in terms of the Schur functions,

sµ/η(x) =
∑

λ

cµηλsλ(x) . (2.15)

3 The refined topological vertex

In this section, we will explain the combinatorial interpretation of the refined vertex in

terms of 3D partitions leaving the complete derivation to appendix A where the relevant

notation is also reviewed.

Recall that the generating function of the 3D partitions is given by the MacMa-

hon function,

M(q) =
∑

n≥0

Cnq
n =

∞∏

k=1

(1− qn)−n . (3.1)

3For a brief overview see appendix D.

– 8 –



J
H
E
P
1
0
(
2
0
0
9
)
0
6
9

The topological vertex Cλ µ ν(q) has the following combinatorial interpretation [15]

M(q)Cλ µ ν(q) =
∑

π(λ,µ,ν)

q|π(λ,µ,ν)|−|π•(λ,µ,ν)| , (3.2)

where π(λ, µ, ν) is a 3D partition such that along the three axes it asymptotically ap-

proaches the three 2D partitions λ, µ and ν. |π| is number of boxes (volume) of the 3D

partition π and π• is the 3D partition with the least number of boxes satisfying the same

boundary condition.4

The refined vertex also has a similar combinatorial interpretation in terms of 3D par-

titions which we will explain now. Recall that the diagonal slices of a 3D partition, π, are

2D partitions which interlace each other. These are the 2D partitions living on the planes

x − y = a, where a ∈ Z. We will denote these 2D partitions by πa. For the usual vertex

the ath slice is weighted with q|πa|, where |πa| is the number of boxes cut by the slice (the

number of boxes in the 2D partition πa). The 3D partition is then weighted by

∏

a∈Z

q|πa| = q
P

a∈Z |πa| = q# of boxes in the π (3.3)

In the case of the refined vertex, the 3D partition is weighted in a different manner. Given

a 3D partition π and its diagonal slices πa we weigh the slices for a < 0 with parameter

q and the slices with a ≥ 0 with parameter t so that the measure associated with π is

given by

(
∏

a<0

q|πa|

) (
∏

a≥0

t|πa|

)
= q

P∞
i=1 |π(−i)| t

P∞
j=1 |π(j−1)| . (3.4)

The generating function for this counting is a generalization of the MacMahon function

and is given by

M(t, q) :=
∑

π

q
P∞

i=1 |π(−i)| t
P∞

j=1 |π(j−1)| =
∞∏

i,j=1

(1− qi−1tj)−1 . (3.5)

We can think of this assignment of q and t to the slices in the following way. If we start

from large positive a and move towards the slice passing through the origin then everytime

we move the slice towards the left we count it with t and everytime we move the slice up

(which happens when we go from a = i to a = i− 1, i = 0, 1, 2 · · · ) we count it with q.

Since we are slicing the skew 3D partitions with planes x− y = a we naturally have a

preferred direction given by the z-axis. Let us take the 2D partition along the z-axis to be

ν. The case we discussed above, obtaining the refined MacMahon function, corresponds

to ν = ∅. For a non-trivial, ν the assignment of q and t to various slices is different and

depends on the shape of ν. As we go from +∞ to −∞ the slices are counted with t if we

go towards the left and is counted with q if we move up. An example is shown in figure 2.

4Since even the partition with the least number of boxes has infinite number of boxes we need to

regularize this by putting it in an N × N × N box as discussed in [15].
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π → ∏
a∈Z q

|π(a)|
a = q

P∞
i=1 |π(νt

i−i)| t
P∞

j=1 |π(−νj+j−1)|

q = blue (solid line), t = red (dashed line)

ν = (4, 3, 1)

Figure 2. Slices of the 3D partitions are counted with parameters t and q depending on the shape

of ν.

After taking into account the framing and the fact that the slices relevant for the

topological vertex are not the perpendicular slices [15] the generating function is given by

Gλ µ ν(t, q) =
(q
t

) ||µ||2+||ν||2

2
t

κ(µ)
2 M(t, q)Pνt(t−ρ; q, t) (3.6)

×
∑

η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t
−ρq−ν)sµ/η(t

−νt
q−ρ),

and the refined vertex is given by

Cλ µ ν(t, q) =
Gλ µ ν(t, q)

M(t, q)
(3.7)

=
(q
t

) ||µ||2+||ν||2

2
t

κ(µ)
2 Pνt(t−ρ; q, t)

∑

η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t
−ρq−ν)sµ/η(t

−νt
q−ρ).

In the above expression, Pν(x; q, t) is the Macdonald function such that

Pνt(t−ρ; q, t) = t
||ν||2

2 Z̃ν(t, q) , (3.8)

Z̃ν(t, q) =
∏

(i,j)∈ ν

(1− ta(i,j)+1qℓ(i,j))−1 , a(i, j) = νt
j − i , ℓ(i, j) = νi − j .

4 Open string partition function and Sym•(C)

In order to gain some insight into the proposed refined vertex and its gluing rules (to be

discussed below) it is useful to recall the connection between topological vertex and open

string amplitudes in the presence of stack of A-branes.

Let us consider the connection between open string partition function and the topo-

logical vertex. When a stack of Lagrangian D-branes is ending on one of the legs of the C3

the partition function is given by

Z(q;V ) =
∑

ν

C∅ ∅ ν(q
−1)TrνV . (4.1)
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Since TrνV = sν(x) where x = {x1, x2, · · · } are the eigenvalues of the holonomy matrix V .

Z(q;V ) =
∑

ν

C∅ ∅ ν(q
−1) sν(x) (4.2)

=
∑

ν

sνt(qρ)sν(x) =

∞∏

i,j=1

(1 + q−i+ 1
2xj) .

In the case of a single Lagrangian brane x = (−Q, 0, 0, 0, · · · ) we get the well known

partition function

Z(q;Q) =

∞∏

i=1

(1−Qq−i+ 1
2 ) . (4.3)

We will now show that the above partition function of a single Lagrangian brane can be

interpreted in terms of the Hilbert series of the the symmetric product of C.

Recall that the Schur functions have the property that

sν/λ(Q) =

{
Q|ν|−|λ|, ν ≻ λ
0, otherwise.

(4.4)

This implies that sν(Q) is non-zero only for those partitions for which ℓ(ν) = 1, i.e.,

ν = (ν1, 0, 0, · · · ). These are exactly the partitions which label the fixed points of the

symmetric product of C, i.e., Symk(C) has a single fixed point labelled by the partition

ν = (k, 0, 0, · · · ). We can construct a generating function of the Hilbert series of the

symmetric products [10],

G(φ, q) :=
∞∑

k=0

φk H[ Symk(C)](q) (4.5)

Since the symmetric product Symk(C) can be identified with the ring Rk :=

C[z1, z2, · · · , zk]/Sk therefore the Hilbert series is given by [10]

H[R](q) =
∞∑

n=0

qn rn(R) (4.6)

rn(R) = # of monomials in R of charge n

where on C q acts as a C× action z 7→ qz. To determine H[ Symk(C)](q) note that the Rk

is just the ring of symmetric functions in the variables (z1, z2, · · · , zk) and therefore the

Schur functions provide a basis of Rk,

Rk =< sν(z1, · · · , zk)|ℓ(ν) ≤ k > , (4.7)

where the condition ℓ(ν) ≤ k is necessary since sν(z1, · · · , zk) = 0 for ℓ(ν) > k. Rk is

isomorphic to the Hilbert space Hk generated by bosonic oscillator up to charge k. Recall

that the bosonic oscillators satisfying the commutation relation

[αn, αm] = nδn+m,0 (4.8)
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generate the Hilbert space, H, isomorphic to the ring of symmetric functions in infinite

variables R . This essentially follows from the identification

pν(x)← ν = 1m12m2 · · · → (α−1)
m1(α−2)

m2 · · · |0〉. (4.9)

Under the above identification

Rk ≃ Hk =< (α−1)
m1 · · · (α−k)

mk |0〉 | {m1, · · ·mk ≥ 0} > (4.10)

and the Hilbert spaces Hk form a nested sequence

H0 ⊂ H1 ⊂ H2 ⊂ H3 ⊂ · · · (4.11)

which corresponds to the nested sequence of Young diagrams of increasing number of rows.

The C× action, which lifts to an action on the Sym•(C) such that the Schur functions

sν(z1, · · · , zk) are eigenfunctions with eigenvalue q|ν|, becomes the action of qL0 on the

states in H (L0 =
∑

n>0 α−nαn),

H[Rk](q) = TrHk
qL0 =

∑

ν|ℓ(ν)≤k

q|ν| =

k∏

n=1

(1− qn)−1 . (4.12)

The Hilbert series of Rk in this case turns out to be the generating function of the number

of partitions with at most k parts. We can expressH[Rk](q) in terms of the Schur functions,

H[Rk](q) =

k∏

n=1

(1− qn)−1 = s(k)(1, q, q
2, · · · ) . (4.13)

The generating functions G(φ, q) is then given by

G(φ, q) =

∞∑

k=0

φkH[Rk](q) =

∞∑

k=0

φkTrHk
qL0 (4.14)

=

∞∑

k=0

φks(k)(1, q, q
2, · · · )

=

∞∑

k=0

s(k)(φ)s(k)(1, q, q
2, · · · ) =

∑

ν

sν(φ)sν(1, q, q2, · · · )

=
∑

ν

sν(q
−ρ)sν(φ q

− 1
2 ) =

∑

ν

sνt(qρ) sν(−q−
1
2φ)

=
∑

ν

C∅ ∅ ν(q
−1)TrνV = Z(q;V ),

where TrνV = sν(Q) and Q = q−
1
2φ.

Thus we see that as we move the brane to infinity (Q = e−t 7→ 0) the contribution of the

higher modes is suppressed. On the other hand as the brane moves towards the origin (Q 7→
1) higher oscillator modes starts contributing with equal weight to the partition function.
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From the above discussion it also follows that the topological vertex C∅ ∅ (k)(q) has an

interpretation as counting the number of states of a given energy in the Hilbert space Hk.

It is tempting to conjecture that the topological vertex with all three partitions non-trivial

has a similar interpretation. This is supported by the fact that topological vertex when

expanded as a powers series in q has non-negative integer coefficients.

It is easy to see that the recursion relation

TrHk
qL0 =

1

1− qk
TrHk−1

qL0 (4.15)

implies that the partition function Z(q;Q) satisfies the equation

(q−∂u − 1 + q
1
2 e−u)Z(q; e−u) = 0 . (4.16)

It is easy to determine the disk contribution using this differential equation. Since Z(q;Q) =

exp(F0
gs

+ F1 + gsF2 + · · · ) therefore

(gs∂u)ne
F
gs = eF/gs{(∂uF )n +O(gs)} (4.17)

Therefore

Z−1(q; e−u)q−∂uZ(q; e−u) = e−(∂uF ) +O(gs) (4.18)

which implies in the limit gs 7→ 0

∂uF0 = −log(1− q1/2e−u) . (4.19)

This relation was noted in [17] where it was related to the non-commutative geometry of

the coordinates on the local mirror geometry. Below we will obtain a similar equation in the

context of the refined vertex, whose geometric understanding is an important open question.

4.1 Stack of branes

In the previous subsection, we considered of a single Lagrangian brane ending on one of

the legs. Now we will consider the case of multiple Lagrangian branes on the one of legs

of C3.

The partition function is given by

Z(x, q) =
∑

ν

C∅ ∅ ν(q
−1) sν(x) , x = {x1, x2, · · · , xN} , (4.20)

=
N∏

i=1

∞∏

j=1

(1 + q−j+ 1
2 xi) .

The above partition function is the generating function of the Hilbert series of product

of symmetric products of C. To see consider the following generating function

G(ϕ1, · · · , ϕN , q) =
∑

k1,··· ,kN

ϕk1
1 ϕ

k2
2 · · ·ϕkN

N H[Mk1···kN
](q) , (4.21)

Mk1k2···kN
= Symk1(C)× · · · × SymkN (C) .
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The ring of functions on Mk1···kN
is spanned by

sν1(x1,1, · · · , x1,k1)sν2(x2,1, · · · , x2,k2) · · · sνN
(xN,1, · · · , xN,kN

) , ℓ(νa) ≤ ka , a = 1, 2, . . . , N.

In terms of the bosonic oscillators α
(a)
n satisfying the commutation relations

[α(a)
n , α(b)

m ] = n δa,bδm+n,0 . (4.22)

the above ring is isomorphic to the Hilbert space Hk1···kN
spanned by

N∏

a=1

(α
(a)
−1)

ma,1 · · · (α(a)
−ka

)ma,ka |0〉 . (4.23)

The Hilbert series of Mk1···kN
is then given by the trace of Hk1···kN

,

H[Mk1···kN
](q) = TrHk1···kN

qL0 (4.24)

where L0 =
∑N

a=1

∑
n>0 α

(a)
−nα

(a)
n . This implies that

H[Mk1···kN
](q) =

∑

m1,1,m1,2···mN,kN

q
PN

a=1

Pka
i=1 ima,i

=

N∏

a=1

∑

ma,1,··· ,ma,ka

q
Pka

i=1 ima,i =

N∏

a=1

ka∏

i=1

(1− qi)−1 .

Since the Hilbert series is given by the product of the Hilbert series therefore

G(ϕ1, · · · , ϕN , q)=

N∏

a=1

G(ϕa, q)=

N∏

a=1

∞∏

i=1

(1− q−iϕa)=Z(q;x) , xa = −q− 1
2 ϕa . (4.25)

4.2 Refined vertex and open string partition function

It is natural to expect that the refined vertex also has an interpretation in terms of gener-

alized open topological string amplitudes in the presence of stacks of A-brane. In fact the

results of [26] suggests that the Khovanov knot invariants are related to this refinement of

the open string amplitude. It thus suggests that we should view the refined vertex as build-

ing blocks for computation of Khovanov knot invariants that can be obtained from local

toric Calabi-Yau manifolds. The first step in motivating this interpretation is to show that

the stack of D-branes in the context of refined vertex can also be related to the symmetric

product of C, as it was possible in the context of ordinary vertex. This we will show here.

When using the refined vertex the open string partition function depends on the leg

on which the stack of branes is put essentially because the refined vertex is not cyclically

symmetric. Thus we have three choices corresponding to the three legs of C3. We will

consider all three cases,

Cλ ∅ ∅(t, q) =
(

q
t

) |λ|
2
sλt(t−ρ) , (4.26)

C∅µ ∅(t, q) =
(

q
t

) ||µt||2−|µ|
2

sµt(q−ρ) ,

C∅ ∅ ν(t, q) =
q||ν||

2/2

∏
s∈ν(1− t1+a(s) qℓ(s))

.
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I: The open string partition function is given by

Z(t, q, x) =
∑

λ

Cλ ∅ ∅(t
−1, q−1)sλ(x) =

∑

λ

(
t
q

) |λ|
2
sλt(tρ)sλ(x) (4.27)

=

∞∏

i=1

(
1 + x

√
t
q t

−i+ 1
2

)
=

∞∏

i=1

(
1−Qt−i+ 1

2

)
, Q = −x

√
t
q .

II: The open string partition function in this case is given by

Z(t, q, x) =
∑

µ

C∅µ ∅(t
−1, q−1)sµ(x) =

∑

µ

(
t
q

) ||µt||−|µ|
2

sµt(qρ)sµ(x) (4.28)

=
∞∏

i=1

(
1 + x q−i+ 1

2

)
=

∞∏

i=1

(
1−Qq−i+ 1

2

)
, Q = −x .

Thus we see that in both these case the partition function is the same as the partition

function obtained from the ordinary vertex except that the partition function depends

on either t or q depending on the leg on which the brane ends.

III: The more interesting case is the third one in which the brane ends on the prefered

leg. In this case the open string amplitude using the refined vertex is given by

Z(V, t, q) =
∑

ν

C∅ ∅ ν(t
−1, q−1)TrνV (4.29)

=
∑

ν

C∅ ∅ ν(t
−1, q−1)sν(x)

where x = {x1, x2, · · · }. Since

C∅ ∅ ν(t, q) =
q||ν||

2/2

∏
s∈ν(1− t1+a(s) qℓ(s))

, C∅ ∅ ν(t
−1, q−1) =

(−1)|ν|
(

t
q

)|ν|/2
t||ν

t||2/2

∏
s∈ν(1− t1+a(s) qℓ(s))

(4.30)

therefore for x = {−Q, 0, 0, · · · } we get

Z(Q, t, q) =
∑

ν

C∅ ∅ ν(t−1, q−1) sν(−Q) =

∞∑

k=0

C∅ ∅ (k)(t
−1, q−1)(−Q)k (4.31)

=
∞∑

k=0

(
Q

t√
k

)k k∏

n=1

(1− t qn−1)−1 .

The above partition function can also be written using a more refined Hilbert series

of the symmetric product of C. The Schur functions provide a basis of Rk. A Schur

function sν(z1, · · · , zk) has charge q|ν| under the C× action for ℓ(ν) ≤ k. We define a

second C× action such that

C× : sν(z1, z2, · · · , zk) 7→ ϑℓ(νt) sν(z1, z2, · · · , zk) , ℓ(ν) ≤ k . (4.32)

– 15 –



J
H
E
P
1
0
(
2
0
0
9
)
0
6
9

Note that this second C× action has a simple interpretation in terms of the bosonic oscilla-

tors. On Hk this second C× acts as ϑN where N =
∑

n>0
α−nαn

n is the operator that counts

the number of total number of particles in a given state |ν〉 . On a state |ν〉 = |1m12m2 · · · 〉
the operator N acts as

N |1m12m2 · · · 〉 = (m1 +m2 + · · · )|1m12m2 · · · 〉 (4.33)

Using this second C× action the refined Hilbert series of Rk

H[Rk](q, ϑ) = TrHk
qL0ϑN =

∑

ν|ℓ(ν)≤k

q|ν| ϑℓ(νt) . (4.34)

For ℓ(ν) ≤ k the partition ν can be written as ν = 1m12m23m3 · · · kmk such that |ν| =∑k
i=1 imi and ℓ(νt) =

∑k
i=1mi therefore

H[Rk](q, ϑ) =
∑

ν|ℓ(ν)≤k

q|ν|ϑℓ(ν) (4.35)

=
∑

m1,m2,··· ,mk

qm1+2m2+3m3+···+kmk ϑm1+m2+···mk =

k∏

i=1

(1− ϑ qi)−1 .

Then the generating function of the refined Hilbert series is given by

G(φ, q, ϑ) =

∞∑

k=0

φk H[Rk](q, ϑ) =

∞∑

k=0

φk
k∏

i=1

(1− ϑ qi)−1 (4.36)

= Z(φ

√
q

t
, ϑ q, q) .

The refined partition function also satisfies an equation similar to the one satisfied by

the quantum dilogarithm,

(ϑ q−∂u − 1 + ϑ q
1
2 e−u )Z(e−u, ϑ q, q) = ϑ− 1 . (4.37)

where Q = e−u.

Understanding the geometric meaning of this relation is an open problem which is

important for a deeper understanding of the refined vertex.

4.3 Brane orientation and the gluing rule

We have seen previously that both the topological vertex and its refinement can be un-

derstood in terms of symmetric products of C. The appearance of the Sym•(C) can be

understood if we embed the topological string in the physical Type IIA string theory [18].

In this case, the Lagrangian branes become the D4-branes wrapping the Lagrangian 3-

cycle in the CY3-fold and filling up two dimensions of the transverse four dimensions.

The appearance of the symmetric product can then be interpreted as counting particles in

two dimensions.

The refined topological vertex depends on two parameters t, q which in the instanton

calculus corresponds to the U(1) rotation parameters of the two orthogonal planes in C2.
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For the branes on the two unpreffered directions the open topological string partition

function depends only on either t or q. This suggests that branes on two unpreferred

directions actually fill the two different orthogonal planes in C2. To obtain the closed

string partition function we have to glue two edges of the C3 vertex. From the instanton

calculus we know that the closed string partition function can be obtained by counting

points in C2. Therefore the gluing to obtain the closed string expression must be such

that the two stack of branes, on the two legs which are to be glued, fill up orthogonal two

dimensional planes in the C2 transverse to the CY3-fold.

Even though this gluing rule is very natural and we will see that it works, a deeper

explanation of this is needed. In particular the asymmetry of the refined vertex is a feature

that has to be explained in terms of the orientation of the Lagrangian branes: the unpre-

ferred directions have branes that fill two orthogonal subspaces of C2. But we also need

to have an explanation of the Lagrangian brane on the preferred direction. This we leave

for future work. This is also related to the Khovanov knot invariant interpretation of the

refined vertex: It should be possible to compute the Khovanov invariants (for toric knots at

least) using the refined vertex, as we noted above. This is currently under investigation [19].

5 Refined partition functions from the refined vertex

In this section, we will use the refined topological vertex to determine the generalized

partition function for various local toric CY3-folds.

5.1 O(−1)⊕O(−1) 7→ P1

The compactification of Type IIA string theory on the Calabi-Yau threefold X = O(−1)⊕
O(−1) 7→ P1 gives rise to U(1) N = 2 gauge theory on the transverse C2 in a particular

limit [1]. Using the topological vertex formalism, the topological string partition function

is given by

Z(q,Q) =
∑

ν

Q|ν|(−1)|ν| C∅ ∅ ν(q)C∅ ∅ νt(q) (5.1)

=
∑

ν

Q|ν|(−1)|ν|sνt(q−ρ)sν(q
−ρ)

=

∞∏

i,j=1

(
1−Qqi+j−1

)
=

∞∏

k=1

(
1− qkQ

)k
,

where T = −ln(Q) is the Kähler parameter, the size of the P1.

We can use the refined topological vertex to determine the refined partition function.

The toric diagram of X and the gluing of the refined vertex are shown in figure 3. From

the gluing of the vertices in figure 3, we see that the refined topological string partition

function is given by

Z(t, q,Q) :=
∑

ν

Q|ν|(−1)|ν| C∅ ∅ ν(t, q) C∅ ∅ νt(q, t) . (5.2)
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ν
⇛

q

t

q

t

ν

q

t

νt

t

q

Figure 3. Toric diagram of O(−1) ⊕ O(−1) 7→ P1. The vertices are glued along the preferred

direction ν.

λq

t

ν = ∅

ν = ∅

q

⇛
t λq

t

ν = ∅
λtt

q

ν = ∅

Figure 4. Toric diagram of O(−1) ⊕ O(−1) 7→ P1. The vertices are glued along the unpreferred

direction λ.

Since

C∅ ∅ ν(t, q) = q
||ν||2

2 Z̃ν(t, q) = q
||ν||2

2

∏

s∈ν

(
1− ta(s)+1qℓ(s)

)−1
, (5.3)

the refined partition function becomes5

Z(t, q,Q) =
∑

ν

Q|ν|(−1)|ν| q
||ν||2

2 t
||νt||2

2

∏
s∈ν(1− ta(s)+1qℓ(s))(1 − ta(s)qℓ(s)+1)

. (5.4)

This is exactly the partition function given in eq. (4.5) of [10] if we identify (t1, t2, q) =

(t, q−1, Q
√

t
q ). A different representation of the partition function can be obtained by

choosing different preferred directions as shown in figure 4.

5An equivalent expression obtained by ν 7→ νt is given by

X

ν

Q|ν|(−1)|ν| q
||νt||2

2 t
||ν||2

2

Q

s∈ν(1 − tℓ(s)+1qa(s))(1 − tℓ(s)qa(s)+1)

.
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The refined partition function with this choice is given by

Z(t, q,Q) =
∑

λ

Q|λ|(−1)|λ| Cλ ∅ ∅(t, q)Cλt ∅ ∅(q, t) (5.5)

=
∑

λ

(−Q)|λ|
(

q
t

) |λ|
2
sλt(t−ρ)

(
t
q

) |λ|
2
sλ(q−ρ)

=
∑

λ

(−Q)|λ|sλt(t−ρ) sλ(q−ρ) =

∞∏

i,j=1

(
1−Qqi− 1

2 tj−
1
2

)

= Exp

{
−

∞∑

n=1

Qn

n(q
n
2 − q−n

2 )(t
n
2 − t−n

2 )

}
.

Identifying the above two representations of the partition function we get the follow-

ing identity

∑

ν

Q|ν|(−1)|ν| q
||ν||2

2 t
||νt||2

2

∏
s∈ν(1− ta(s)+1qℓ(s))(1 − ta(s)qℓ(s)+1)

= Exp

{
−

∞∑

n=1

Qn

n(q
n
2 − q−n

2 )(t
n
2 − t−n

2 )

}
(5.6)

which is a specialization of the identity eq. (5.4) of [25] and was also derived in [10].

Note that in gluing the two vertices, we have have taken the parameters q or t be the

different on the gluing edges as discussed in section 4.3. The parameter does not have to be

the same as the vertices are actually an infinite distance apart. Actually, one can also check

that a combinatorial description of the partition function requires that the parameters be

different on the two gluing edges.

5.2 χy-genus, Sym•(C2) and the refined topological vertex

In [8], it was shown that the the generating function of the equivariant χy-genus of the

Hilbert scheme of C2, denoted by Hilbk[C2], is given by the topological string amplitude of

a certain CY3-fold X0, which is the partial compactification of X . The equivariant action

of C2 was given by (z1, z2) 7→ (q z1, q
−1 z2). Here we will show that the refined partition

function of X0 is given by similar generating function for which the equivariant action is

given by (z1, z2) 7→ (q z1, t
−1z2). The generating function is given by

G(ϕ, y, t, q) =
∞∑

k=0

ϕkχy(Hilbk[C2]) . (5.7)

and will be calculated using the localization. The fixed points of Hilbk[C2] under the above

two parameter action are labeled by the 2D partitions of n [12]. The weight at the fixed

point labeled by the partition ν is given by [10, 27]
∑

i,j

ewi,j =
∑

(i,j)∈ ν

(
t1+a(i,j)qℓ(i,j) + t−a(i,j)q−1−ℓ(i,j)

)
(5.8)

Using these weights the χy-genus of Hilbk[C2] is given by

χy(Hilbk[C2]) =
∑

i

2k∏

j=1

1− ye−wi,j

1− e−wi,j
, (5.9)
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λ

Figure 5. Toric diagram of partially compactified O(−1)⊕O(−1) 7→ P1.

where i label the fixed points (the partitions of k in this case) and j label the weights at a

given fixed point,

χy(Hilbk[C2]) =
∑

ν,|ν|=k

∏

(i,j)∈ ν

(1− yt1+a(i,j)qℓ(i,j))(1 − yt−a(i,j)q−1−ℓ(i,j))

(1− t1+a(i,j)qℓ(i,j))(1 − t−a(i,j)q−1−ℓ(i,j))
(5.10)

And the generating function is given by

G(ϕ, y, t, q) =
∑

ν

ϕ|ν|
∏

(i,j)∈ ν

(1− yt1+a(i,j)qℓ(i,j))(1− yt−a(i,j)q−1−ℓ(i,j))

(1− t1+a(i,j)qℓ(i,j))(1− t−a(i,j)q−1−ℓ(i,j))
(5.11)

The above generating function can be simplified to an expression which can be compared

with the refined vertex calculation more easily,

G(ϕ, y, t, q) =
∑

ν

ϕ|ν|q
||ν||2

2 t
||νt||2

2 Z̃ν(t, q)Z̃νt(q, t) (5.12)

×
∏

(i,j)∈ ν

(1− y t1+a(i,j)qℓ(i,j))(1− y t−a(i,j)q−1−ℓ(i,j))

Now we will calculate the refined partition function of the CY3-fold X0. The toric

diagram of the CY3-fold X0 is shown in figure 5. In this case the topological string

partition function is given by

Z(Q1, Q2) :=
∑

λ,ν

(−Q1)
|ν|(−Q2)

|λ|Cλ ∅ ν(t, q)Cλt ∅ νt(q, t)

=
∑

ν,λ

(−Q1)
|ν|(−Q2)

|λ| q
||ν||2

2 Z̃ν(t, q) sλt(t−ρq−ν) t
||νt||2

2 Z̃νt(q, t) sλ(t−νt
q−ρ)

=
∑

ν

(−Q1)
|ν| q

||ν||2

2 t
||νt||2

2 Z̃ν(t, q) Z̃νt(q, t)
∑

λ

(−Q)|λ|sλt(t−ρq−ν) sλ(t−νt
q−ρ)

=
∑

ν

(−Q1)
|ν| q

||ν||2

2 t
||νt||2

2 Z̃ν(t, q) Z̃νt(q, t)

∞∏

i,j=1

(
1−Q2 t

i− 1
2
−νt

j qj− 1
2
−νi

)
.
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Figure 6. Two possible choices for the preferred direction, the internal line (a) and the parallel

external lines (b).

For Q1 = 0 we get the perturbative (in the gauge theory sense) contribution. The

instanton part is then given by

Z(Q1, Q2)

Z(0, Q2)
=
∑

ν

(−Q1)
|ν| q

||ν||2

2 t
||νt||2

2 Z̃ν(t, q) Z̃νt(q, t)
∞∏

i,j=1

(
1−Q2 t

i− 1
2
−νt

j qj− 1
2
−νi

1−Q2t
i− 1

2 qj− 1
2

)

=
∑

ν

(−Q1)
|ν| q

||ν||2

2 t
||νt||2

2 Z̃ν(t, q) Z̃νt(q, t)

×
∏

(i,j)∈ν

(
1−Q2 t

i− 1
2
−νt

j qj− 1
2
−νi

)(
1−Q2t

νt
j−i+ 1

2 qνi−j+ 1
2

)
.

The above partition function is exactly the generating function of the χy-genus after

the identification

ϕ = −Q1 , y = Q2

√
q
t . (5.13)

5.3 O(0)⊕O(−2) 7→ P1

This geometry can be obtained from local P1 × P1 by taking the size of one of the P1 very

large. This limit gives two copies of O(0)⊕O(−2) 7→ P1.

In the usual topological vertex formalism the partition function is given by

Z(q,Q) =
∑

ν

Q|ν|(−1)|ν|C∅ ∅ ν(q) (−1)|ν| q
κ(ν)

2 C∅ ∅ νt(q) (5.14)

=
∑

ν

Q|ν|sνt(q−ρ) q
κ(ν)

2 sν(q
−ρ) =

∑

ν

Q|ν|sνt(q−ρ) sνt(q−ρ)

=

∞∏

i,j=1

(
1−Qqi+j−1

)−1
=

∞∏

k=1

(
1−Qqk

)−k

= Exp

{
∞∑

n=1

Qn

n(q
n
2 − q−n

2 )2

}
.
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In this case to define the refined partition function we have two choices for the preferred

direction as shown in figure 6. The refined partition function for the case (a) of figure 6 is

given by

Z(t, q,Q) =
∑

ν

Q|ν|(−1)|ν|C∅ ∅ ν(t, q) fν(t, q)C∅ ∅ νt(q, t) (5.15)

=
∑

ν

(−Q)|ν|Z̃ν(t, q)Z̃νt(q, t) q
||ν||2

2 t
||νt||2

2 fν(t, q)

=
∑

ν

(Q
√

q
t )

|ν| t||ν
t||2

∏
s∈ν(1− ta(s)+1 qℓ(s))(1− ta(s) qℓ(s)+1)

.

The partition function for case (b) of figure 6 is given by,

Z(t, q,Q) =
∑

λ

Q|λ|(−1)|λ| C∅λ ∅(t, q) fλ(t, q) Cλt ∅ ∅(t, q) (5.16)

=
∑

λ

(−Q)|λ|
(q
t

) ||λ||2

2
t

κ(λ)
2 sλt(q−ρ) fλ(t, q) sλ(t−ρ)

=
∑

λ

(
Q
√

q
t

)|λ|
sλt(t−ρ) sλt(q−ρ) =

∞∏

i,j=1

(
1−Qqi tj−1

)−1

= Exp





∞∑

n=1

Qn
(

q
t

)n
2

n(q
n
2 − q−n

2 )(t
n
2 − t−n

2 )




.

The partition functions corresponding to the two choices are actually equal to each

other (after scaling Q by
√
q/t) as can be seen by using the summation formulas for the

Macdonald functions.

5.4 Another toric geometry: ˜C3/Z2 × Z2

The geometry in figure 7 is an interesting geometry consisting of a vertex with all non-

trivial representations in the middle. In the limit of vanishing Q1 and Q3 (with λ = ∅),
i.e, sending the lower and upper-most vertices to infinity, we recover our previous result

for the conifold. The refined partition function is given by

Z =
∑

λ,µ,ν

(−Q1)
|λ|(−Q2)

|µ|(−Q3)
|ν|C∅ ∅λ(t, q)Cµ ν λt(q, t)Cµt ∅ ∅(t, q)C∅ νt ∅(t, q) (5.17)

=
∑

λ,µ,ν,η

(−Q1)
|λ|q

‖λ‖2

2 t
‖λt‖2

2 Z̃λ(t, q)Z̃λt(q, t)

(
t

q

) |η|
2

sµt/η(q
−ρt−λt

)sν/η(q
−λt−ρ)

×sµ(−Q2t
−ρ)sνt(−Q3q

−ρ)

=
∑

λ

(−Q1)
|λ|q

‖λ‖2

2 t
‖λt‖2

2 Z̃λ(t, q)Z̃λt(q, t)
∞∏

i,j=1

(1−Q2 q
−ρj t−λt

j−ρi)(1−Q3 q
−λj−ρit−ρj )

(1−Q2Q3 q−ρi−1/2t−ρi+1/2)

Note that for Q1 = 0 the product representation of the refined partition function is

consistent with having two P1’s with normal bundle O(−1)⊕O(−1) such that the sum of

the two P1’s can be deformed into a P1 with normal bundle O(0)⊕O(−2).
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,Q2µ

,Q3ν

,Q1λ

Figure 7. A toric geometry with three P1’s.

5.5 Local P1 × P1

In this section, we will use the refined vertex to calculate the refined A-model partition

function for the local P1 × P1. The toric geometry for this case is shown in figure 8.

The parallel horizontal edges in the rectangle correspond to the base P1. We cut the

toric diagram perpendicular to these parallel lines following [6]. The 2D partitions on the

parallel edges will be denoted by ν1 and ν2. The half of the toric diagram corresponds

to a geometry O(0) ⊕ O(−2) 7→ P1 with a stack of D-branes on the two parallel edges

in the representation ν1, ν2. We denote the open topological string partition function by

Zν1,ν2(t, q,Qf ) where Tf = −logQf is the Kähler parameter of the fiber P1. The two parts

of the toric diagram are identical. This implies that the open topological string partition

function associated with both sides is the same, Zν1,ν2(t, q,Qf ). The only subtlety arises

in how these two open string partition functions are “glued” together to form the closed

string partition function. This gluing information is contained in the normal geometry of

the base curve and determines the framing factors.

From the toric geometry, figure 8, it is clear that locally the two P1’s corresponding to

the base curve (the upper and lower parallel edges) are O(0)⊕O(−2) 7→ P1 and O(−2)⊕
O(0) 7→ P1. Therefore the framing factor with the top edge is fν1(t, q) and with the lower

edge is fν2(q, t).

With this choice of framing factors the generalized partition function is given by

Z(Qb, Qf , t, q) :=
∑

ν1,ν2

(−Qb)
|ν1|+|ν2|Zν1,ν2(t, q,Qf ) fν1(t, q) fν2(q, t)Zν2,ν1(q, t,Qf ), (5.18)

where

fν1(t, q) fν2(q, t) = (−1)|ν1|

(
t

q

) ||νt
1||

2−|ν1|

2

q−
κ(ν1)

2 (−1)|ν2|
(q
t

) ||νt
2||

2−|ν2|

2
t−

κ(ν2)
2 (5.19)
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ν1

ν2

= Zν1,ν2(t, q, Qf)

(a) (b)

Figure 8. (a) Toric diagram of local P1 × P1, (b) a slice of the toric diagram used to compute the

partition function.

and

Zν1,ν2(t, q,Qf ) =
∑

λ

(−Qf )|λ|Cλt ∅ ν1
(t, q) fλ(t, q)C∅ λνt

2
(t, q) (5.20)

= q
||ν1||

2

2
+

||νt
2||

2

2 Z̃ν1(t, q)Z̃νt
2
(t, q)

×
∑

λ

(−Qf )|λ| sλ(t−ρq−ν1) fλ(t, q)
(q
t

) ||λ||2

2
t

κ(λ)
2 sλ(t−ν2q−ρ)

= q
||ν1||

2

2
+

||νt
2||

2

2 Z̃ν1(t, q)Z̃νt
2
(t, q)

∑

λ

(
Qf

√
q
t

)|λ|
sλ(t−ρq−ν1) sλ(t−ν2q−ρ)

= q
||ν1||

2

2
+

||νt
2||

2

2 Z̃ν1(t, q)Z̃νt
2
(t, q)

∏

i,j

(
1−Qf t

i−1−ν2,j qj−ν1,i

)−1
. (5.21)

Z∅,∅(t, q,Qf ) is the partition function of O(0)⊕O(−2) 7→ P1. We can separate out the

contribution which is independent of Qb and write the above partition function as

Z(Qb, Qf , t, q) = Zpert(Qf , t, q)Zinst(Qb, Qf , t, q) (5.22)

Zpert(Qf , t, q) = Z∅,∅(t, q,Qf )Z∅,∅(q, t,Qf )

Zinst(Qb, Qf , t, q) =
∑

ν1,ν2

Q
|ν1|+|ν2|
b

Zν1,ν2(t, q,Qf )

Z∅,∅(t, q,Qf )



(
t

q

) ||νt
1||

2

2

q−
κ(ν1)

2




×
((q

t

) ||νt
2||

2

2
t−

κ(ν2)
2

)
Zν2,ν1(q, t,Qf )

Z∅,∅(q, t,Qf )

=
∑

ν1,ν2

Q
|ν1|+|ν2|
b q||ν

t
2||

2
t||ν

t
1||

2
Z̃ν1(t, q)Z̃νt

2
(t, q) Z̃ν2(q, t)Z̃νt

1
(q, t)

×
∞∏

i,j=1

(1−Qf t
i−1qj)(1−Qf q

i−1tj)

(1−Qf ti−1−ν2,jqj−ν1,i)(1−Qf qi−1−ν1,j tj−ν2,i)
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5.5.1 Partition function from instanton calculation

The partition function of the 4D gauge theory was calculated by Nekrasov [3]. The 5D

partition function which is the one A-model topological strings compute is a q-deformation

of the 4D partition function [10, 11, 14].

The partition function can be calculated once the weights of the U(1) × U(1) action

at the fixed points are determined. The fixed points are labelled by a set of N 2D parti-

tions (in the U(N) case), therefore, for a fixed point labelled by {ν1, · · · , νN} the weight

W (ν1, · · · , νN ) is given by

W (ν1, · · · , νN ) =

N∏

a,b=1

N(νa, νb) (5.23)

where

N(ν, ν)=

[
∏

s∈ν

(
1−ta(s)qℓ(s)+1

)(
1−t−a(s)−1q−ℓ(s)

)]−1

= t
||νt||2+|ν|

2 q
||ν||2−|ν|

2 Z̃ν(t, q) Z̃νt(q, t)

N(νa, νb) =


 ∏

(i,j)∈νa

(
1−Qbat

νt
b,j−i qνa,i−j+1

) ∏

(i,j)∈νb

(
1−Qbat

−νt
a,j+i−1 q−νb,i+j

)


−1

=

∞∏

i,j=1

1−Qab q
j ti−1

1−Qab q
−νb,i+j t−νt

a,j+i−1
.

and −logQab are the Kähler parameters. The partition function is then given by

Z
U(N)
gauge theory :=

∑

ν1,ν2,··· ,νN

Q̂|ν1|+|ν2|+···+|νN |
N∏

a,b=1

N(νa, νb) (5.24)

The above partition function computed from the gauge theory side is the A-model

partition function of the Calabi-Yau threefold which gives rise to 5D supersymmetric gauge

theory, via M-theory compactification, with zero Chern-Simons coefficient.

For N = 2 the partition function in eq. (5.24) can be simplified to the following

expression (Q = Qf , Q̂Q = q
q
t )

Z
U(2)
gauge theory =

∑

ν1,ν2

q
|ν1|+|ν2|Z(νt

1, ν
t
2;Q, t, q) (5.25)

Z(ν1, ν2;Q, t, q) :=
(q
t

)|ν1|+|ν2|
q||ν

t
1||

2
t||ν2||2Z̃νt

1
(t, q)Z̃ν1(q, t)Z̃νt

2
(t, q)Z̃ν2(q, t)G(ν1, ν2, Q, t, q)

G(ν1, ν2, Q, t, q) =
∞∏

i,j=1

(1−Qqj−1ti)(1 −Qqjti−1)

(1−Qq−νt
2,i+j−1 t−ν1,j+i)(1 −Qq−νt

2,i+j t−ν1,j+i−1)

Z̃ν(t, a) =
∏

s∈ ν

(
1− ta(s)+1qℓ(s)

)−1
, ℓ(i, j) = νi − j , a(i, j) = νt

j − i (5.26)

It is easy to see that the above gauge theory partition function is the same as the refined

partition function of the last section.
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Cn,m
∑

jL,jR
N

(jL,jR)
C (jL, jR)

B +mF, m ≥ 0 (0,m+ 1
2)

2B + 2F (1
2 , 4)⊕ (0, 7

2)⊕ (0, 5
2)

2B + 3F (1, 11
2 )⊕ (1

2 , 5)⊕ (1
2 , 4) ⊕ 2(0, 9

2)⊕ (0, 7
2 )⊕ (0, 5

2 )

3B + 3F

(
2, 15

2

)
⊕
(

3
2 , 7
)
⊕
(

3
2 , 6
)
⊕ 3

(
1, 13

2

)
⊕ 2

(
1, 11

2

)
⊕ (1, 9

2)

⊕
(

1
2 , 7
)
⊕ 3(1

2 , 6) ⊕ 3(1
2 , 5)⊕ 2(1

2 , 4) ⊕ (1
2 , 3) ⊕ 4(0, 11

2 )

⊕ 3(0, 9
2)⊕ 3(0, 7

2)⊕ (0, 5
2)⊕ (0, 3

2 )

3B + 4F

(
3, 19

2

)
⊕
(

5
2 , 9
)
⊕
(

5
2 , 8
)
⊕ 3

(
2, 17

2

)
⊕
(

3
2 , 9
)
⊕ 2

(
2, 15

2

)

⊕4
(

3
2 , 8
)
⊕
(
1, 17

2

)
⊕
(
2, 13

2

)
⊕ 4

(
3
2 , 7
)
⊕ 7

(
1, 15

2

)
⊕ 2

(
1
2 , 8
)

⊕
(
0, 17

2

)
⊕ 2

(
3
2 , 6
)
⊕ 6

(
1, 13

2

)
⊕ 7

(
1
2 , 7
)
⊕
(
0, 15

2

)
⊕
(

3
2 , 5
)

⊕5
(
1, 11

2

)
⊕ 8

(
1
2 , 6
)
⊕ 7

(
0, 13

2

)
⊕ 2

(
1, 9

2

)
⊕ 6

(
1
2 , 5
)

⊕6
(
0, 11

2

)
⊕
(
1, 7

2

)
⊕ 4

(
1
2 , 4
)
⊕ 7

(
0, 9

2

)
⊕ 2

(
1
2 , 3
)

⊕4
(
0, 7

2

)
⊕
(

1
2 , 2
)
⊕ 3

(
0, 5

2

)
⊕
(
0, 3

2

)
⊕
(
0, 1

2

)

Table 1. Spin content of BPS states for local P1 × P1.

5.5.2 Spin content of BPS states

In this section, we list the spin content of various curves obtained from the refined partition

function. A basis of H2(P
1 × P1) is given by {B,F} such that

B · B = F · F = 0 , B · F = 1 . (5.27)

The class nB + mF has a holomorphic representative if n,m ≥ 0. The genus of such a

curve is given by

g(nB +mF ) = (n− 1)(m− 1) . (5.28)

From the refined partition function we can extract the spin content of the various states

coming from C ∈ H2(X,Z). In the table 1 we list the spin content for certain Cn,m =

nB +mF .

5.6 Local Fm

In this section, we will use the refined vertex to calculate the refined partition function for

the local Fm, m = 0, 1, 2. The case m = 0 (local P1 × P1) has already been discussed in

the last section. As we saw in [6], the partition function for local Fm differ just by framing

factors along the edges which label the instanton charge (the edges corresponding to the

base P1). This continues to be the case for the refined partition function for local Fm.

The toric geometry for these cases is shown in figure 9. The parallel edges in the

polygon correspond to the base P1. We cut the toric diagram perpendicular to these parallel
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Figure 9. Local Fm : m = 0 , m = 1 , m = 2 .

lines as we did for the local P1×P1. The 2D partitions on the parallel edges will be denoted

by ν1 and ν2. The half of the toric diagram corresponds to a geometry O(0)⊕O(−2) 7→ P1

with a stack of D-branes on the two parallel edges in the representation ν1, ν2. We denote

the open topological string partition function by Zν1,ν2(t, q,Qf ) where Tf = −logQf is the

Kähler parameter of the fiber P1. Zν1,ν2(t, q,Qf ) was calculated in the last section and

is given by eq. (5.18). Although the two parts of the toric diagram look different (except

for m = 0 in which case they are identical) they are related to each other by an SL(2,Z)

transformation. This implies that the open topological string partition function associated

with each side is the same, Zν1,ν2(t, q,Qf ). Thus the difference arises only in how these

two open string partition functions are “glued” together to form the closed string partition

function. This gluing information is contained in the normal geometry of the base curve

and is what determines the framing factors.

From the toric geometry, figure 9, it is clear that locally the two P1’s corresponding

to the base curve (the upper and lower parallel edges) are O(−m)⊕O(−2 +m) 7→ P1 and

O(−2 −m) ⊕O(m) 7→ P1. Therefore the framing factor with the top edge is f−m+1
ν1

(t, q)

and with the lower edge is fm+1
ν2

(q, t).

Using the above framing factors the generalized partition function is given by

Z(m)(Qb, Qf , t, q) =
∑

ν1,ν2

(−Qb)
|ν1|+|ν2|Q

m |ν2|
f Zν1,ν2(t, q,Qf ) f−m+1

ν1
(t, q)

fm+1
ν2

(q, t)Zν2,ν1(q, t,Qf ).

We can write the above partition function as

Z(m)(Qb, Qf , t, q) = Z
(m)
pert(Qf , t, q)Z

(m)
inst (Qb, Qf , t, q) (5.29)

where Z
(m)
pert(Qf , t, q) is a function only of Qf and, in the field theory limit, it gives the

perturbative prepotential of the theory. Z
(m)
inst (Qb, Qf , t, q) depends on Qb and gives the

instanton correction to the prepotential in the field theory limit. Although Qf and Qb are

on the same footing in the topological string theory we write the partition function this

way to simplify the expressions and to be able to compare with the m = 0 case, which
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corresponds to Nekrasov’s partition function.

Z
(m)
pert(Qf , t, q) = Z∅,∅(t, q,Qf )Z∅,∅(q, t,Qf )=

∞∏

i,j=1

(
1−Qf t

i qj−1
)−1 (

1−Qf t
i−1 qj

)−1
.

Z
(m)
inst (Qb, Qf , t, q) =

∑

ν1,ν2

Q
|ν1|+|ν2|
b Q

m |ν2|
f

Zν1,ν2(t, q,Qf )

Z∅,∅(t, q,Qf )

((
t
q

) ||νt
1||

2

2
q−

κ(ν1)
2

)−m+1

×
((

q
t

) ||νt
2||

2

2
t−

κ(ν2)
2

)m+1

(−1)m(|ν1|+|ν2|)
Zν2,ν1(q, t,Qf )

Z∅,∅(q, t,Qf )
,

where

Zν1,ν2(t, q,Qf )

Z∅,∅(t, q,Qf )
= q

||ν1||
2

2
+

||νt
2||

2

2 Z̃ν1(t, q)Z̃νt
2
(t, q)

∞∏

i,j=1

1−Qf t
i−1qj

1−Qf ti−1−ν2,j qj−ν1,i
. (5.30)

The expression for the Z
(m)
inst (Qb, Qf , t, q) can be simplified to become

Zinst(Qb, Qf , t, q) =
∑

ν1,ν2

Q
|ν1|+|ν2|
b Q

m|ν2|
f (−1)m(|ν1|+|ν2|)

(q
t

)m
2

(||ν1||2+||νt
2||

2)
t

m
2

(κ(ν1)−κ(ν2))

× q||νt
2||

2
t||ν

t
1||

2
Z̃ν1(t, q)Z̃νt

2
(t, q) Z̃ν2(q, t)Z̃νt

1
(q, t)

×
∞∏

i,j=1

(1−Qf t
iqj−1)(1−Qf q

itj−1)

(1−Qf ti−ν2,jqj−1−ν1,i)(1−Qf qi−ν1,j tj−1−ν2,i)
. (5.31)

5.6.1 Spin content of BPS states: local F1

In this section, we list the spin content of some curves obtained from the refined partition

function given in eq. (5.31) for the case m = 1. F1 has a two dimensional H2(F1) with a

basis given by B and F such that

B · B = −1 , F · F = 0 , B · F = 1 . (5.32)

A class nB +mF has a holomorphic curve in it if m− n, n ≥ 0. The arithmetic genus of

such a curve, C = nB +mF , is given by the adjunction formula,

g(nB + (n+ k)F ) =
(n− 1)(n − 2)

2
+ k(n− 1) . (5.33)

Since F1 is the one point blowup of P2 there is a different basis {H,E} of H2(F1) which

will be useful for us later,

H = B + F, E = B (5.34)

H ·H = 1 , E · E = −1 , H · E = 0 ,

where E is the exceptional curve obtained by the blowup and H is the basic class of P1 in

P2 given by linear polynomials. It is clear that the invariants of the curves B + F, 2(B +

F ), 3(B+F ), · · · will be the same as the invariants of the curves H, 2H, 3H, · · · in local P2.
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• B + k F : These curves are of genus zero for all k ≥ 0. The moduli space of such

curves is given by Pd−1 where d = −C ·KF1 = 2k+ 1. Therefore, the left spin jL = 0

and right spin jR = k,

N
(jL,jR)
B+k F = δjL,0 δjR,k . (5.35)

This is exactly what we get from the refined partition function.

• 2B+2F : This curve is also of genus zero, and since 2(B+F ) = 2H the moduli space

is given by P5, the space of quadratic polynomials in P2 (up to overall scaling). Thus

N
(jL,jR)
2B+2F = δjL,0 δjR, 5

2
. (5.36)

This is exactly what we get from the refined partition function once multicovering

has been taken into account.

• 2B + 3F : This curve is of genus one. The spin content from the refined partition

function is
(

1

2
, 4

)
⊕
(

0,
7

2

)
⊕
(

0,
5

2

)
.

• 2B + 4F : This curve is of genus 2. The spin content from the refined partition

function is
(

1,
11

2

)
⊕
(

1

2
, 5

)
⊕
(

1

2
, 4

)
⊕ 2

(
0,

9

2

)
⊕
(

0,
7

2

)
⊕
(

0,
5

2

)
.

• 2B + 5F : This curve is of genus 3. The spin content is given by

(
3

2
, 7

)
⊕
(

1,
13

2

)
⊕
(

1,
11

2

)
⊕ 2

(
1

2
, 6

)
⊕
(

1

2
, 5

)
⊕ 2

(
0,

11

2

)

⊕
(

1

2
, 4

)
⊕ 2

(
0,

9

2

)
⊕
(

0,
7

2

)
⊕
(

0,
5

2

)
.

• 3B + 3F : This curve is of genus 1. The spin content is given by

(
1

2
,
9

2

)
⊕ (0, 3) .

Note that this is also the spin content of the curve 3H in local P2.

• 3B + 4F : This curve is of genus 3. The spin content is given by

(
3

2
,
13

2

)
⊕ (1, 6)⊕ (1, 5) ⊕ 2

(
1

2
,
11

2

)
⊕ (0, 6)

⊕ 2

(
1

2
,
9

2

)
⊕ (0, 5) ⊕

(
1

2
,
7

2

)
⊕ (0, 4)⊕ (0, 3) ⊕ (0, 2)
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• 3B + 5F : This curve is of genus 5. The spin content is given by

(
5

2
,
17

2

)
⊕ (2, 8) ⊕ (2, 7) ⊕ 3

(
3

2
,
15

2

)
⊕ (1, 8) ⊕ 2

(
3

2
,
13

2

)

⊕ 3 (1, 7) ⊕
(

1

2
,
15

2

)
⊕
(

3

2
,
11

2

)
⊕ 4 (1, 6) ⊕ 5

(
1

2
,
13

2

)

⊕ 2 (0, 7) ⊕ 2 (1, 5) ⊕ 5

(
1

2
,
11

2

)
⊕ 3 (0, 6) ⊕ (1, 4)

⊕ 4

(
1

2
,
9

2

)
⊕ 5 (0, 5) ⊕ 2

(
1

2
,
7

2

)
⊕ 3 (0, 4)

⊕
(

1

2
,
5

2

)
⊕ 3 (0, 3) ⊕ (0, 2)⊕ (0, 1) .

• 4B + 4F : This curve has genus 3. The spin content is given by

(
3

2
, 7

)
⊕
(

1,
11

2

)
⊕
(

1

2
, 6

)
⊕
(

1

2
, 5

)
⊕
(

1

2
, 4

)
⊕
(

0,
13

2

)
⊕
(

0,
9

2

)
⊕
(

0,
5

2

)

This is also the spin content of the curve 4H in local P2.

• 5B + 5F : This curve has genus 6. The spin content is given by

(3, 10) +

(
5

2
,
17

2

)
⊕ (2, 9) ⊕ (2, 8) ⊕ (2, 7) ⊕

(
3

2
,
19

2

)
⊕
(

3

2
,
17

2

)
⊕ 2

(
3

2
,
15

2

)

⊕
(

3

2
,
13

2

)
⊕
(

3

2
,
11

2

)
⊕ (1, 9) ⊕ 2(1, 8) ⊕ 2(1, 7)

⊕ 2(1, 6) ⊕ (1, 5) ⊕ (1, 4) ⊕
(

1

2
,
17

2

)
⊕ 2

(
1

2
,
15

2

)

⊕ 3

(
1

2
,
13

2

)
⊕ 2

(
1

2
,
11

2

)
⊕
(

1

2
,
7

2

)
⊕
(

1

2
,
5

2

)
⊕ (0, 8)

⊕ 2(0, 7) ⊕ 2(0, 6) ⊕ 2(0, 5) ⊕ (0, 4) ⊕ (0, 3) ⊕ (0, 1) .

This is also the spin content of the curve 5H in local P2

From this example it is clear that although the refined vertex can only be used for a

certain kind of geometries (those giving rise to gauge theories) the spin content of BPS

states for any toric CY3-fold can be obtained by embedding this toric CY3-fold in another

toric CY3-fold which does have a gauge theory interpretation. For example, the refined

vertex can not be used to determine the refined partition function for local P2 but since

one point blowup of local P2 is local F1 which does have a gauge theory interpretation

therefore spin content of BPS states coming from local P2 can be obtained from the refined

partition function of local F1. We list the spin content of first few BPS states for local P2

in the table 2.
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Cn = nH
∑

jL,jR
N

(jL,jR)
C (jL, jR)

H (0, 1)

2H (0, 5
2)

3H
(

1
2 ,

9
2

)
⊕ (0, 3)

4H

(
3
2 , 7
)
⊕
(
1, 11

2

)
⊕
(

1
2 , 6
)
⊕
(

1
2 , 5
)

⊕
(

1
2 , 4
)
⊕
(
0, 13

2

)
⊕
(
0, 9

2

)
⊕
(
0, 5

2

)

5H

(3, 10) +
(

5
2 ,

17
2

)
⊕ (2, 9) ⊕ (2, 8) ⊕ (2, 7) ⊕

(
3
2 ,

19
2

)

⊕ 2
(

3
2 ,

15
2

)
⊕
(

3
2 ,

13
2

)
⊕
(

3
2 ,

11
2

)
⊕ (1, 9) ⊕ 2(1, 8)

⊕ 2(1, 7) ⊕ 2(1, 6) ⊕ (1, 5) ⊕ (1, 4) ⊕
(

1
2 ,

17
2

)
⊕ 2

(
1
2 ,

15
2

)

⊕ 3
(

1
2 ,

13
2

)
⊕ 2

(
1
2 ,

11
2

)
⊕
(

1
2 ,

7
2

)
⊕
(

1
2 ,

5
2

)
⊕ (0, 8) ⊕ 2(0, 7)

⊕ 2(0, 6) ⊕ 2(0, 5) ⊕ (0, 4) ⊕ (0, 3) ⊕ (0, 1)

Table 2. Spin content of BPS states for local P2.

5.7 An SU(3) geometry

In this section, we will use the refined vertex to calculate the partition function of a certain

CY3-fold which gives rise to compactified 5D supersymmetric SU(3) gauge theory with

Chern-Simons coefficient m.

The refined partition function is given by

Z=
∑

ν1,ν2,ν3

Q
|ν1|
b1 Q

|ν2|
b2
Q

|ν3|
b3 Zν1,ν2,ν3(t, q) (fm+2

ν1
(t, q) f−m

ν2
(q, t) f−m+2

ν3
(t, q))Zν3,ν2,ν1(q, t), (5.37)

where

Zν1,ν2,ν3 :=
∑

λ,µ

(−Q1)
|λ|(−Q2)

|µ|C∅λ ν1
(t, q)fλ(t, q)Cλt µ ν2

(t, q)fµ(t, q)Cµt ∅ ν3
(t, q)

= (−Q1)
|λ|(−Q2)

|µ|
[
( q

t )
||λ||2−|λ|

2 t
κ(λ)

2 q
||ν1||

2

2 Z̃ν1(t, q)sλ(t−νt
1q−ρ)

]
fλ(t, q)

×
[
( q

t )
||µ||2−|µ|

2 t
κ(µ)

2 q
||ν2||

2

2 Z̃ν2(t, q)
∑

η

sλ/η(t
−ρq−ν2)sµ/η(t

−νt
2q−ρ)

]
fµ(t, q)

×
[
q

||ν3||
2

2 Z̃ν3(t, q)sµ(t−ρq−ν3)
]

= q
||ν1||

2+||ν2||
2+||ν3||

2

2 Z̃ν1(t, q)Z̃ν2(t, q)Z̃ν3(t, q)

×
∑

η

( q
t )

|η|
2

(
∑

λ

sλ(−Q1q
−ρt−νt

1) sλ/η(t
−ρq−ν2)

)

×
(
∑

µ

sµ(−Q2t
−ρq−ν3) sµ/η(q

−ρq−νt
2

)

= q
||ν1||

2+||ν2||
2+||ν3||

2

2 Z̃ν1(t, q)Z̃ν2(t, q)Z̃ν3(t, q)

×
∞∏

i,j=1

(1−Q1 t
j−1/2−νt

1,iqi−1/2−ν2,j )−1

×(1−Q2 t
j−1/2−νt

2,iqi−1/2−ν3,j )−1(1−Q1Q2 t
j−1/2−νt

1,iqi−1/2−ν3,j )−1
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Figure 10. The web diagram of the CY3-fold giving rise to SU(3) gauge theory with Nf = 4.

In the above expression −logQ1 and −logQ2 are the Kähler classes of the P1’s in the fiber

and Qb1,b2,b3 are given by [7]

Qb1 = QbQ
m+1
1 Q

(m−1)(1−δm,0)
2 (5.38)

Qb2 = QbQ
(m−1)(1−δm,0)
2

Qb3 = QbQ
δm,0

2 .

This is exactly the K-theoretic version of the Nekrasov’s partition function as can be

verified by using the weights of the torus action given in [10].

5.8 An SU(3), Nf = 4 geometry

In this section, we will compute the refined partition function for the CY3-fold which gives

rise to SU(3) gauge theory with adjoint matter via geometric engineering. This CY3-fold is

a blowup of a resolved A2 singularity fibered over P1. The toric diagram of this geometry

and the choice of the preferred direction for each vertex is shown in figure 10.

The refined partition function for this geometry is given by

Z =

=
∑

{µi},{νi},{λi}

(−Q̂1)
|µ1| . . . (−Q̂4)

|µ4|(−Q1)
|ν1| . . . (−Q4)

|ν4|(−Q̃1)
|λ1| . . . (−Q̃3)

|λ3|

×Cλ1µ1∅(t, q)Cλt
1∅ν1

(q, t)C∅µt
1ν2

(q, t)C∅µ2νt
1
(t, q)Cλ2µ3νt

2
(t, q)Cλt

2µt
2ν3

(q, t)C∅µt
3ν4

(q, t)

×C∅µ4νt
3
(t, q)Cλ3∅νt

4
(t, q)Cλt

3µt
4∅

(q, t)
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a) b) c)

µ

λ ν

µ ν

λ

Figure 11. Three different slicings of the same toric diagram. Short red lines indicate the “instan-

ton” direction.

=
∑

{µi},{νi},{λi},{ηi}

(−Q̂1)
|µ1| . . . (−Q̂4)

|µ4|(−Q1)
|ν1| . . . (−Q4)

|ν4|(−Q̃1)
|λ1| . . . (−Q̃3)

|λ3|

×q
‖νt

1‖
2+...+‖νt

4‖
2

2 t
‖ν1‖

2+...+‖ν4‖
2

2

(q
t

) |η1|+|η2|−|η3|−|η4|

2
Z̃ν1(q, t)Z̃νt

1
(t, q) . . . Z̃ν4(q, t)Z̃νt

4
(t, q)

×sλt
1/η1

(t−ρ)sµ1/η1
(q−ρ)sλ1(q

−ρt−ν1)sµt
1
(q−νt

2t−ρ)sµ2(t
−ν1q−ρ)sλt

2/η2
(t−ρq−νt

2)

×sµ3/η2
(t−ν2q−ρ)sλ2/η3

(q−ρt−ν3)sµt
2/η3

(q−νt
3t−ρ)sµt

3
(q−νt

4t−ρ)sµ4(t
−ν3q−ρ)

×sλt
3
(t−ρq−νt

4)sλ3/η4
(q−ρ)sµt

4/η4
(t−ρ)

=
∑

{νi}

(−Q1)
|ν1| . . . (−Q4)

|ν4|q
‖νt

1‖
2+...+‖νt

4‖
2

2 t
‖ν1‖

2+...+‖ν4‖
2

2

×Z̃ν1(q, t)Z̃νt
1
(t, q) . . . Z̃ν4(q, t)Z̃νt

4
(t, q)

×
Q∞

i,j=1
(1−Q̃1q−ρi t

−ν1,i−ρj )(1−Q̂1q
−νt

2,i−ρj t−ρi )(1−Q̂2q
−νt

3,j−ρi t
−ν1,i−ρj )(1−Q̂3q

−νt
4,i−ρj t

−ν2,j−ρi )

(1−Q̃1Q̂1q
−νt

2,j
−ρi+1/2

t
−ν1,i−ρj−1/2

)(1−Q̃3Q̂4q
−νt

4,j
−ρi−1/2

t
−ν3,i−ρj+1/2

)

×(1−Q̂4q
−ρit−ν3,i−ρj )(1−Q̃3q

−νt
4,i−ρj t−ρi)(1−Q̃2q

−νt
2,i−ρj t−ν3,j−ρi)(1−Q̃2Q̂2Q̂3q

−νt
4,j−ρit−ν1,i−ρj)

(1− Q̃2Q̂3q
−νt

4,i−ρj+1/2t−ν3,j−ρi−1/2)(1− Q̃2Q̂2q
−νt

2,j−ρi−1/2t−ν1,i−ρj+1/2)

Using the results of [3], it is easy to show that the above partition function is the same

as the compactified 5D gauge theory partition function.

5.9 Slicing independence of the partition function

To show that the partition functions defined by the refined vertex are independent of the

chosen “instanton” or the preferred direction consider the toric diagrams shown in figure 11.

For this diagram we can choose the preferred direction in three different ways. Partition

function for figure 11(a) is given by

Z =
∑

λ,µ

(−Q1)
|λ|(−Q2)

|µ|C∅λ ∅(t, q)Cµ λt ∅(q, t)Cµt ∅ ∅(t, q) (5.39)

– 33 –



J
H
E
P
1
0
(
2
0
0
9
)
0
6
9

=
∑

λ,µ

(−Q1)
|λ|(−Q2)

|µ|sλ(q−ρ)

(
∑

η

( t
q

) |η|
2
sµt/η(q

−ρ)sλt/η(t
−ρ)

)
sµ(t−ρ)

=
∑

η

( t
q

) |η|
2

(
∑

λ

sλ(−Q1q
−ρ)sλt/η(t

−ρ)

)(
∑

µ

sµ(−Q2t
−ρ)sµt/η(q

−ρ)

)

=
∞∏

i,j=1

(1−Q1 q
−ρit−ρj )(1−Q2 q

−ρit−ρj)
∑

η

( t
q

) |η|
2
sηt(−Q1q

−ρ)sηt(−Q2t
−ρ)

=

∞∏

i,j=1

(1−Q1 q
−ρit−ρj )(1−Q2 q

−ρit−ρj)

1−Q1Q2

√
t
q q

−ρit−ρj

.

The partition function for figure 11(b) is given by

Z =
∑

ν,λ

(−Q1)
|ν|(−Q2)

|λ|C∅ ∅ ν(t, q)C∅ λ νt(q, t)C∅ λt ∅(t, q) (5.40)

=
∑

ν

(−Q1)
|ν| q

||ν||2

2 t
||νt||2

2 Z̃ν(t, q) Z̃νt(q, t)

(
∑

λ

(−Q2)
|λ|sλ(t−ρ q−ν)sλt(q−ρ)

)

=
∑

ν

(−Q1)
|ν| q

||ν||2

2 t
||νt||2

2 Z̃ν(t, q) Z̃νt(q, t)

∞∏

i,j=1

(1−Q2t
−ρiq−ρj−νi)

=

∞∏

i,j=1

(1−Q2 q
ρi t−ρj )

∑

ν

(−Q1)
|ν| q

||ν||2

2 t
||νt||2

2 Z̃ν(t, q) Z̃νt(q, t)
∏

(i,j)∈ν

(1−Q2t
−ρiq−ρj−νi).

The partition function for figure 11(c) is the same as that of figure 11(b) after changing

ν 7→ νt.

Thus for the partition function to be independent of the preferred direction requires

the following identity:

∑

ν

(−Q1)
|ν| q

||ν||2

2 t
||νt||2

2 Z̃ν(t, q) Z̃νt(q, t)
∏

(i,j)∈ν

(1−Q2 t
−ρiq−ρj−νi)

=
∞∏

i,j=1

1−Q1 q
−ρit−ρj

1−Q1Q2

√
t
q q

−ρit−ρj

which can be written in terms of Macdonald function Pν(x; t, q) as

∑

ν

Pν(−Q1 t
−ρ; q, t)Pνt(q−ρ; t, q)

∏

(i,j)∈ν

(1−Q2 t
−ρiq−ρj−νi) =

∞∏

i,j=1

1−Q1 q
−ρit−ρj

1−Q1Q2

√
t
q q

−ρit−ρj

For Q2 = 0 this is a well known identity (Example 6, page 352 of [25]). For Q2 6= 0 we

have verified the above identity up to Q3
1. This irrelevance of the chosen preferred direction

is the manifestation of duality between supersymmetric N = 2 gauge theories with gauge

groups SU(M)N−1 and SU(N)M−1 as conjectured in [2].
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6 Conclusion

In this paper we constructed a refined topological vertex which was used to determine the

generalized partition function encoding left-right spin content information. The derivation

of the refined topological vertex depended upon insights from the instanton calculus. From

the very beginning it was clear that the cyclic symmetry of the topological vertex will have

to be sacrificed in order to obtain a refined vertex if the instanton calculus is to be our

guide. Whether a refined vertex exists which is cyclically symmetric and can be used for

all toric geometries, unlike the refined vertex which is not suitable for geometries that do

not give rise to gauge theories, remains to be seen.
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A Derivation of the refined topological vertex

In this section, we will review the correspondence between the 3D partition and the topo-

logical vertex following [15, 22] and use the formalism of 3D partitions to define a “vertex”

which depends on infinitely many parameters. A specialization of this “vertex” will be the

refined vertex.

A.1 Young diagrams and skew partitions

Let ν = {ν1 ≥ ν2 ≥ ν3 ≥ · · · | νi ≥ 0} be a Young diagram, i.e., a 2D partition. We denote

by |ν| the size of the partition, |ν| =
∑

i νi, and by ℓ(ν) the number of non-zero νi. A

pictorial representation can be obtained by placing νi boxes at the ith position, as shown in

figure 12 for ν = {4, 3, 3, 2, 1}. The height of the columns either stays the same or decreases

as we move to the right. The transpose of ν is denoted by νt,

νt = {νt
1, ν

t
2, · · · } , νt

j = #{i | νi ≥ j} . (A.1)

We denote by (i, j) ∈ ν the box whose upper right corner has coordinates (i, j). If (i, j) ∈ ν,
then it is clear that (j, i) ∈ νt. Given two partitions λ and ν we say λ ⊆ ν, if (i, j) ∈ λ
implies (i, j) ∈ ν.

Given two partitions λ and ν such that λ ⊆ ν a skew partition denoted by ν/λ consists

of all boxes of ν which are not in λ,

ν/λ = {(i, j) ∈ ν | (i, j) /∈ λ}. (A.2)
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−→i

↑
j

ν1

ν2 ν3

ν4

ν5

νt
4

νt
3

νt
2

νt
1

ν = {4, 3, 3, 2, 1}

ν/{2, 1} =

Figure 12. (a) Young diagram of the partition {4, 3, 3, 2, 1}. (b) The skew Young diagram of

{4, 3, 3, 2, 1}/{2, 1}.

Figure 13. For a partition σ(N) and an arbitrary 2D partition ν, the skew partition σ(N)/ν is

always a 2D partition, provided N ≥ max(ν1, νt
1
).

A skew partition ν/λ for ν = {4, 3, 2, 2, 1} and λ = {2, 1} is shown in figure 12(b).

In general, ν/λ is not a 2D partition, i.e., not a Young diagram. But if ν is such that

it has N boxes in each row and N rows then for N ≥ max(λ1, λ
t
1) the skew diagram ν/λ

is a 2D partition. We will denote by σ(N) the 2D partition for which ℓ(σ(N)) = N and

σ1(N) = σ2(N) = · · · σN (N) = N . In this paper, we will only consider skew partitions of

the form σ(N)/ν and will denote this 2D partition by νc,

νc
i = N − νN−i+1 , i = 1, 2, · · · , N (A.3)

For ν = {3, 2, 2} and σ(6) = {6, 6, 6, 6, 6, 6}, figure 13 shows the skew partition σ(6)/ν.

A.2 Plane partitions and skew plane partitions

A plane partition is an array of non-negative integers {πi,j | i, j ≥ 1} such that

πi,j ≥ πi+r,j+s , r, s ≥ 0 (A.4)

Placing πi,j cubes at the (i, j) position gives a pictorial representation of the plane partition.

In this sense, plane partitions can be regarded as a 3 dimensional generalization of the

Young diagrams, and they are also known as 3D partitions. The total number of cubes is

given by |π| =∑i,j πi,j. Figure 14(a) shows an example of a 3D partition.
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(a) (b)

Figure 14. (a) A 3D partition, (b) a skew 3D partition.

A skew 3D partition of shape ν/λ is an array of non-negative integers {πi,j | (i, j) ∈
ν/λ} such that

πi,j ≥ πi+r,j+s , r, s ≥ 0. (A.5)

An example of a skew plane partition is shown in figure 14(b).

A skew plane partition of shape νc will be denoted by π(ν). It is clear that π(ν) is

just a semi-standard Young tableau (SSYT) of shape νc except that we have to subtract

the minimal semi-standard Young tableau of the same shape. Since the sum of entries

of a minimal semi-standard Young diagram of shape λ is given by m(λ) =
∑

i iλi, the

generating function for the number of skew plane partitions of shape νc is given by

Zν(q) :=
∑

π(ν)

q|π| = q−m(νc)
∑

SSY T,T

x#of 1’s
1 x#of 2’s

2 · · · (A.6)

= q−m(νc)sνc(x1, x2, · · · ) , xi = qi

= q−m(νc)sνc(q, q2, q3, · · · )
=

∏

(i,j)∈ νc

(1− qbh(i,j))−1

Where ĥ(i, j) = j − νi + i− νt
j − 1 is the hook length. For ν = ∅ we get the number of 3D

partitions in a box of size N ×N ×∞. In the limit N 7→ ∞ this becomes the MacMahon

function,
∏∞

k=1(1 − qk)−k.6 From now on we will take the limit N 7→ ∞. In this limit

6The generating function of 3D partitions is given by the product of q-deformed hook length, [h(s)]q :=

(1 − qh(s))−1, over the infinite 2D partition, σ(∞). It is easy to see that the generating function of 2D

partitions
Q∞

k=1(1−qk)−1 is given by the product of q-deformed hook lengths over the infinite 1D partition.

However, the product of q-deformed hook lengths over the infinite 3D partition is not the generating function

of 4D partitions.
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3
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6
7
8
9

10

17 18 19 20 21 22 23 24
3
4
5
6
7
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9

10

(a) The hook length of a box (i, j) ∈ νc,

ĥ(i, j) = j − νi + i− νt
j − 1

(b) The hook length of a box (i, j) ∈ ν,
h(i, j) = νi − j + νt

j − i+ 1

Figure 15. The hook length for ν and νc is defined in the usual way. Note that the orientation of

the hook in ν and νc agree if we rotate νc by 180◦.

the function

Z̃ν(q) :=
Zν(q)

Z∅(q)
(A.7)

can be written as a product over ν of q-deformed hook lengths,7

Z̃ν(q) =
∏

(i,j)∈ν

(1− qh(i,j))−1 , h(i, j) = νi − j + νt
j − i+ 1 (A.8)

= q−m(ν)sν(q, q
2, q3, · · · ) = q−

||ν||2

2 sνt(q1/2, q3/2, q5/2 · · · ) .

Apart from the framing factor q
||ν||2

2 , the function Z̃ν(q) is just the one-partition topo-

logical vertex,

C∅ ∅ ν(q) = q
||ν||2

2 Z̃ν(q) . (A.9)

As discussed in [15], the topological vertex with all three non-empty partitions is related

to the combinatorics of skew 3D partitions in which the “hole” in the partition is along

all three axes. More specifically, we imagine that the region behind the asymptotic 2D

partition in all three directions is excised.

The boxes are placed in the positive octant O+ of R3 whose coordinates we are going

to denote by (x, y, z). Let us associate the (x, y) plane with the (i, j) plane. Given a 3D

partition π as a stack of cubes in the positive octant O+ of R3 we can reconstruct the

array of non-negative numbers πi,j as the height of the stack of cubes, i.e., as a height

function defined on the (x, y) plane. However, we can obtain a different array of non-

negative numbers πt
j,k (πtt

i,k) by considering the height of the stack relative to the (y, z)

((x, z)) plane. This transformation is the analog of the transpose for the 2D partitions.

7Proof of this is given in appendix C for the two parameter generalization, this identity follows by setting

q = t.
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We can define a generalized skew plane partition π(λ, µ, ν) as an ordinary 3D partition

from which cubes at (i, j, k) are removed if (i, j) ∈ ν, or (j, k) ∈ µ or (k, i) ∈ λ,

π(λ, µ, ν) = π r {(i, j, k)|(i, j) ∈ ν} ∪ {(i, j, k)|(j, k) ∈ µ} ∪ {(i, j, k)|(k, i) ∈ λ} . (A.10)

Then we can define the generating function for the number of generalized skew plane

partitions of shape (λ, µ, ν),

Zλ µ ν(q) =
∑

π(λ,µ,ν)

q|π(λ,µ,ν)| . (A.11)

It is clear that Zλ µ ν(q) = Zµ λ νt(q). The cyclic symmetry of the function is related to the

transpose of the 3D partition,

π(λ, µ, ν) = πt(µ, ν, λ) ⇒ Zλ µ ν(q) = Zµ ν λ(q) (A.12)

π(λ, µ, ν) = πtt(ν, λ, µ) ⇒ Zλ µ ν(q) = Zν λ µ(q)

Apart from the framing factors Zλ µ ν(q)/Z∅ ∅ ∅(q) is equal to the topological vertex [15].

To calculate Zλ µ ν(q) we use the transfer matrix approach following [15, 22].

A.3 Transfer matrix approach and Schur functions

To a 3D partition π we can associate a sequence of 2D partitions, {η(a) | a ∈ Z}, by taking

diagonal slices of π as shown in figure 16(a),

η(a) = {πi+a,i | i ≥ max(1,−a+ 1)} . (A.13)

These diagonal slices are perpendicular to the (x, y) plane and their projections on the

base are given by a set of equations parameterized by a ∈ Z: x− y = a.

Each slice obtained from the plane partition will be a 2D partition. Since these 2D

partitions come from a plane partition, they satisfy the interlacing condition. Two 2D

partitions µ and ν interlace, µ ≻ ν, if:

µ1 ≥ ν1 ≥ µ2 ≥ ν2 ≥ . . . (A.14)

The diagonal slices {η(a) | a ∈ Z} of a 3D partition π are such that

η(a+ 1) ≻ η(a) , a < 0 , (A.15)

η(a) ≻ η(a+ 1) , a ≥ 0 .

There exists a very useful set of coordinates to describe the 2D partitions called the Frobe-

nius coordinates:

ai = µi − i+
1

2
, bi = µt

i − i+
1

2
, i = 1, 2, · · · , d(µ) (A.16)

where d(µ) is the number of squares along the diagonal of µ. In terms of Frobenius

coordinates, one can relate certain fermionic states to the 2D partition

|µ〉 =
d∏

i=1

ψ∗
ai
ψbi
|0〉 (A.17)
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(a) (b)

Figure 16. (a)The diagonal slicing of the plane partition: we end up with a series of 2D partitions

that obey the interlacing condition eq. (A.15), (b) the slices are parametrized by integers.

where ψa, ψ
∗
a, a ∈ Z+1/2 are the generators of the Clifford algebra satisfying the following

anti-commutation relations:

{ψa, ψb} = 0, {ψ∗
a, ψ

∗
b } = 0, {ψa, ψ

∗
b} = δab. (A.18)

One can define operators analogous to creation and annihilation operators which can be

written in terms of the modes Jn of the fermionic current ψ∗ψ,

Γ±(z) = exp

(
∑

n>0

znJ±n

n

)
. (A.19)

The modes Jn of the fermionic bilinear are such that

Jn =
∑

k∈Z+ 1
2

ψk+nψ
∗
k , n = ±1,±2, · · · , (A.20)

and satisfying the commutation relations

[Jn, Jm] = −nδn+m,0 , [Jn, ψk] = ψk+n , [Jn, ψ
∗
k] = −ψ∗

k−n . (A.21)

The operators Γ±(x) satisfy the following commutation relation,

Γ+(x)Γ−(y) = (1− xy)Γ−(y)Γ+(x) (A.22)

The relevance to the creation and annihilation operators becomes more evident if their

action on a state corresponding to a 2D partition is considered:
∏

i

Γ+(xi)|λ〉 =
∑

µ

sµ/λ(x1, x2, · · · )|µ〉 (A.23)

∏

i

Γ−(xi)|λ〉 =
∑

µ

sλ/µ(x1, x2, · · · )|µ〉
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Since

sλ/µ(1) =

{
1, ifλ ≻ µ
0, otherwise.

}
, (A.24)

it follows from eq. (A.23) that

Γ+(1)|λ〉 =
∑

µ≻λ

|µ〉,

Γ−(1)|λ〉 =
∑

λ≻µ

|µ〉. (A.25)

The generating function of the number of plane partitions Z3D(q) := Z∅ ∅ ∅(q) can be now

expressed using Γ± as

Z∅ ∅ ∅(q) = 〈∅|
(

∞∏

t=0

qL0Γ−(1)

)
qL0

(
−1∏

t=−∞

Γ+(1)qL0

)
|∅〉 (A.26)

where L0 is the Hamiltonian such that the operator qL0 moves a diagonal slice by one unit.

The action of the operator qL0 on a state corresponding to a 2D partition is defined as

qL0 |µ〉 = q|µ||µ〉 (A.27)

The intuitive way of understanding the form of the partition function in terms of the

creation and annihilation operators is straightforward: we start with the slice at a = −∞
with the empty set and act on this slice with Γ+(1) to create all possible partitions as a

sum. On the next slice (as we go from a = −∞ to 0), we apply the creation operator on

this sum, we again create all possible partitions such that they interlace the partitions in

the previous slice. We keep acting with Γ+(1), until we hit the main slice a = 0. The

main slice is where we start applying the annihilation operator Γ−(1) which destroys the

previously created partitions, essentially by “creating” 2D partitions on the slice a that are

interlaced by the partitions on the previous slice a − 1, for positive a’s. This procedure,

with the operators qL0 ’s, gives the sum of q|π| over all possible 3D partitions satisfying

the interlacing condition that we stated before. Note that Γ− acting on the vacuum gives

zero, so we can move the Γ−’s to the right to act on the vacuum, and use the commutation

relations between Γ±’s each time we pass them through each other. In [15], it is shown

that Z3D(q) is actually the McMahon function;

Z3D(q) =
∏

n>0

1

(1− qn)n
. (A.28)

A.4 Partition function with an infinite number of parameters

In the previous section, we briefly outlined the systematic way to compute the partition

function Z3D(q). We assumed that the partition at each slice is counted with the same

parameter q. In this section, following [22] we want to describe the generalization of this to

an infinite number of parameters and show that this generalization gives the same partition
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Three inner corners: v0, v1, v2
Two outer corners: u0, u1

{v1, v2, v3} = {−4,−2, 3}
{u1, u2} = {−3, 0}
∑

i ui =
∑

i vi

Figure 17. Inner and Outer corners of the partition ν = (4, 3, 3).

function when the different parameters on each slice are set to be equal to each other. Let

us begin with the case when λ = µ = ∅ and then we will allow λ and µ to be non-trivial.

We keep our convention from the previous section that an integer a is used to describe each

slice and we associate the parameter qa to each slice. For a 2D partition ν, we can divide

the corners of the pictorial representation of the corresponding partition into two groups:

inner and outer corners. We parametrize the inner and outer corners by their coordinates,

vi and ui respectively, of their projection onto the real line as shown in figure 17. It is easy

to see that [22]

M∑

i=0

vi =
M−1∑

i=0

ui , M = # of outer corners . (A.29)

It is convenient to introduce another set of parameters {x±m |m ∈ Z + 1
2} and identify

them with qa’s in the following shape dependent way [22],

x+
m+1

x+
m

= qm+ 1
2
, m > vM or ui − 1 > m > vi , (A.30)

x+
ui−

1
2

x−
ui+

1
2

= q−1
ui
,

x−
vi−

1
2

x+
vi+

1
2

= qvi ,

x−m
x−m+1

= qm+ 1
2
, m < v1 or vi+1 − 1 > m > ui .

The generating function of the 3D partitions is then given by [22]

Z3D(q) =
∑

π

∏

a∈Z

q|ηa|
a = 〈0|

0∏

k=−∞

Γ−

(
x+
−k+ 1

2

) ∞∏

k=1

Γ+

(
x−
−k+ 1

2

)
|0〉 (A.31)

=

∞∏

k1=1

∞∏

k2=1

(
1− x+

k1−
1
2

x−
−k2+

1
2

)−1

x+
k− 1

2

=

k−1∏

i=0

qi , k ≥ 1 , (A.32)

x−
− 1

2

= 1 , x−
−k+ 1

2

=

k−1∏

i=1

q−i , k ≥ 2 .
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Z3D(q) =
∞∏

k1=1

∞∏

k2=1


1−

k1−1∏

i=0

qi

k2−1∏

j=1

q−j




−1

(A.33)

For qi = q , i ∈ Z we get

Z3D(q) =
∞∏

k=1

(1− qk)−k . (A.34)

Having shown that setting all parameters equal to each other agrees with what we

originally obtained, we can continue to develop the generalization to non-trivial λ and

µ. The partition function with λ = µ = ∅ is given by (ν being the 2D partition in the

preferred direction)

Zν(q) = P∅ ∅ ν(q) =
∏

(i,j)∈νc

(1− q(i,j))−1 , (A.35)

q(i,j) =
∏

(a,b)∈H(i,j)

qb−a ,

where H(i, j) is the set of boxes which form the hook of (i, j).

The partition function Z3D(q) can be written as a product over boxes of σ(∞) such

that each box contributes a factor of (1 − x)−1 where x is the product of parameters qi
intersected by the hook length.8 A similar interpretation in terms of hook length exists for

the generating function of skew plane partitions.

We define Pλµν(q) as [22]

Pλµν(q) =
∑

π�π0

∏

k∈Z

q
|λ(k)|
k (A.36)

Where the sum is over all 3D partitions π such that π asymptotically approaches λ, µ and

ν along the three axes and π0 is a 3D partition with the least number of boxes. Each such

partition π can be sliced along the diagonal such that we get a 2D partition π(a) along the

diagonal passing through (0, a). In defining Pλµν(q) we weight each slice with a different

parameter qa.

For non-trivial λ and µ the partition function is given by [22]

Pλµν(q) = Zν(q)
∑

η

sλt/η(x
+) sµ/η(x

−) , (A.37)

where x± = {x±m |m ∈ Z + 1
2}. This is the most general partition function in which each

diagonal slice is counted with a different parameter.

At the end of this section, we would like to start talking about how to assign q and

t to the slices depending on the shape of ν to get the generalized partition function from

the generalized plane partitions. We will leave the physical motivation for the particular

choice and the details to the next section.

8Z3D(q) =
Q∞

i,j=1(1 − (
Qi

a=1 qa−j)(
Qj−1

b=1 qi−b))
−1.

– 43 –



J
H
E
P
1
0
(
2
0
0
9
)
0
6
9

· · · · · · · · · · · ·

↓ =

→ =

2 3 4 5 6 7 8 9
3
4
5
6
7
8
9

10

(a) (b)

Figure 18. a) We can trace the profile of a particular 2D partition starting at j = ∞ and going

to i =∞ as depicted in the figure. b) To each vertical pass we associate a black box, and a white

one to each horizontal pass. If we put these boxes in a row, then we get a unique “finger print” to

a partition. The coordinates of the centers are given by the sets D±.

Figure 18 illustrates the idea behind our choice: while following the arrows on the

boundary of the 2D partition, every time we have an arrow pointing down, we assign a

black box (figure 18(b), and every time we have an arrow pointing to the right, we assign

a white box. The coordinates of the center of these boxes are given by

Black Boxes :

{
µi − i+

1

2
| i = 1, 2, · · ·

}
(A.38)

White Boxes :

{
j − µt

j −
1

2
| j = 1, 2, · · ·

}

These coordinates are closely related to the Frobenius coordinates. Note that if we

count the number of black boxes to the left of the ith white box, we get νi. Similarly, if we

count the number of white boxes to the right of the jth black box, we get νt
j.

We can divide the half-integers into two sets using the function ǫ(n) defined as

ǫ(n) = + if vi < n < ui (A.39)

ǫ(n) = − if ui < n < vi+1

for 0 ≤ i ≤ M − 1:9 D+ = {n|ǫ(n) = +} and similarly D− = {n|ǫ(n) = −}. The sets D+

and D− are actually the same as the sets consisting of the coordinates of the center of the

black and white boxes, respectively.

A.5 Equivariant parameters, boundary of the Young diagram and instanton

calculus

The vertex we have obtained so far counts each slice with a different parameter and therefore

depends on infinitely many parameters. The usual vertex can be obtained by setting all

9M is the number of outer corners.
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the parameters equal to q [15, 22]. It is clear that we can obtain the vertex which depends

on two parameters by some choice of identification between qa and t, q. It is not clear a

priori what the map {qa | a ∈ Z} 7→ {t, q} should be.

However, the relation between the instanton partition functions and A-model topo-

logical string partition function, via geometric engineering, provides some insight into the

possible map between the parameters. Recall that the partition function of the 5D com-

pactified U(1) theory can be written as [14]

Z(ǫ1, ǫ2, β) =
∑

ν

exp

(
−1

4

∫

x 6=y
f ′′ν (ǫ1, ǫ2|x)f ′′ν (ǫ1, ǫ2|y)γǫ1,ǫ2(x− y|β,Λ)

)
, (A.40)

where

γǫ1,ǫ2(x|β,Λ) =
1

2ǫ1ǫ2

[
−β

6

(
x+

1

2
(ǫ1 + ǫ2)

)3

+ x2log(βΛ)

]
+

∞∑

n=1

1

n

e−βnx

(1− eβnǫ1)(1− eβnǫ2)

and fν(ǫ1, ǫ2|x) is the profile of the partition ν (ǫ2 > 0 > ǫ1),

fν(x|ǫ1, ǫ2) = |x|+
∞∑

i=1

(
|x+ ǫ1 − ǫ2νi − ǫ1 i| − |x− ǫ1 − ǫ1 i| − |x− ǫ2νi − ǫ1i|+ |x− ǫ1i|

)
.

The profile of the partition controls the contribution of the partition to the partition

function. The parameters −ǫ1 and ǫ2 are the height and the width of the boxes in the

partition as shown in figure 19. Since these 2D partitions on the edges are the boundaries

of the 3D partitions therefore the height and the width of the 3D box is exactly −ǫ1, ǫ2 as

shown in figure 20.

Hence in constructing the 3D partition from the diagonal slices as we move the slice

towards the left we move it an amount −ǫ1 and as we move it upward we move it an amount

ǫ2. In the transfer matrix formalism this implies that different diagonal slices are counted

with different parameters e−ǫ1 and eǫ2 . Since the shape of the partition ν in the z direction

determines the left-ward and upward motion of the slice therefore slices are counted with

e−ǫ1 and eǫ2 according to the shape of the partition ν.

A.6 q, t slices and the boundary of the Young diagram

The generating function of 3D partitions is not difficult to calculate since we need only to

specialize the parameters qa. From the discussion in the previous discussion it follows that

for ν = ∅,

qa =

{
t, a ≥ 0

q, a < 0 .
(A.41)

The partition function Z3D(q) becomes

Z3D(t, q) =

∞∏

i,j=1

(1− tiqj−1) . (A.42)

But, in general, the shape of ν will determine whether a slice is counted with parameter

t or parameter q.
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(a) (b)

Figure 19. The profile of the partition is drawn bold; a) shows the 2D partition for the self-dual

case ǫ2 = −ǫ1, whereas b) shows the same partition for the non self-dual case ǫ1 6= ǫ2(ǫ2 = −2ǫ1).

≀ ≀

ǫ2 = −ǫ1

(a) (b)

≀ ≀

ǫ2 = −2ǫ1

Figure 20. a) The figure shows the partition along the preffered direction for the self-dual case for

the toric diagram O(−1)⊕O(−1) 7→ P1. b) the same as in a) but for ǫ2 = −2ǫ1.

For a non-trivial ν, the map between {x±m |m ∈ Z + 1
2} and {t, q} is given by

{x+
m|m ∈ D+} = {tiq−νi |i = 1, 2, 3, · · · } , (A.43)

{x−m|m ∈ D−} = {qj−1t−νt
j |j = 1, 2, 3, · · · } ,

where D+ is the set of black boxes and D− is the set of white boxes in the Maya diagram

(figure 18(b)) of ν. If we consider the ith white box from the left side, the number of

black boxes to the right of this box is given by νi. This implies that there is one to

one correspondence,

{(m1,m2)|m1 ∈ D− ,m2 ∈ D+ ,m1 ≥ m2} 7→ {(i, j) ∈ ν}, (A.44)
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0 1 2 3 4 5 6
0

1

2

3

4

5

6

π → ∏
a q

|π(a)|
a = q

P∞
i=1 |π(νt

i−i)| t
P∞

j=1 |π(−νj+j−1)|

q = blue (solid line), t = red (dashed line)

ν = (4, 3, 1)

Figure 21. Slices of the 3D partitions are counted with parameters t and q depending on the shape

of ν.

h( ) = a( ) + ℓ( ) + 1

a( ) = # of boxes on the left

ℓ( ) = # of boxes below

Zν(t, q) =
∏

/∈ν(1− ta( )+1qℓ( ))−1ℓ( )

a( )
0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 22. Zν(t, q) is the Hook series of the complement of ν.

and therefore

{(m1,m2)|m1 ∈ D− ,m2 ∈ D+ ,m1 < m2} ≃ {(i, j) /∈ ν}, (A.45)

which implies that

Zν =
∏

m1<m2,m1,2∈D±

(1− x+
m2
x−m1

)−1 =
∏

(i,j)/∈ν

(1− qj−νi−1ti−νt
j)−1 (A.46)

For ν = ∅,

Z∅(t, q) := M(t, q) =
∞∏

i,j=1

(1− tiqj−1)−1 . (A.47)

M(t, q) is a two parameter generalization of the MacMahon function.

If we define q = eiǫ1, t = e−iǫ2 then logM(t, q) is symmetric in ǫ1, ǫ2 (upto an infi-

nite constant)

logM(t, q) =
ζ(3)

ǫ1ǫ2
− iζ(2)

2

(
ǫ1 + ǫ2
ǫ1ǫ2

)
+
ζ(1)

12

(
(ǫ1 + ǫ2)

2 + ǫ1ǫ2
ǫ1ǫ2

)
+ i

ζ(0)

24
(ǫ1 + ǫ2)

+
∑

g1+g2≥2

(−1)g1+g2
B2g1B2g2B2g1+2g2−2

(2g1)!(2g2)!(2g1 + 2g2 − 2)
ǫ2g1−1
1 ǫ2g2−1

2 .
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h( ) = a( ) + ℓ( ) + 1

a( ) = # of boxes on the right

ℓ( ) = # of boxes on top

∏
∈ν(1− qh( ))−1 → =

∏
∈ν(1− ta( )+1qℓ( ))−1

s(4 2 1)(q) = 1
(1−q)3(1−q2)(1−q3)(1−q4)(1−q6)

Z̃(4 2 1)(t, q) = 1
(1−t)3(1−t q)(1−t2 q)(1−t2 q2)(1−t3 q3)

ℓ(i, j)

a(i, j)
0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 23. A Young diagram ν = (4 2 1).

It is easy to show that (appendix C) if we define

Z̃ν(t, q) :=
Zν(t, q)

Z∅(t, q)
, (A.48)

then Z̃ν(t, q) can be written as a product over boxes of ν,

Z̃ν(t, q) =
∏

s∈ν

(
1− ta(s)+1qℓ(s)

)−1
=
∏

s∈νt

(
1− tℓ(s)+1qa(s)

)−1
. (A.49)

The function Z̃ν(t, q) is a specialization of the Macdonald symmetric function P (x; q, t) [25],

Z̃ν(t, q) = t−
||ν||2

2 Pνt(t−ρ; q, t) . (A.50)

Thus we see that this particular specialization of the Macdonald function can be interpreted

as counting skew plane partitions such that the shape of ν determines whether to count a

box with t or q.

When all three partitions (λ, µ, ν) are non-trivial, the partition function (in diagonal

slicing) is given by

Pdiag(λµν) = 〈λt|
∏

m∈Z+ 1
2

Γ−ǫ(m)(x
ǫ(m)
m )|µ〉 , (A.51)

= 〈λt|
∏

m∈D+

Γ−(x+
m)

∏

m∈D−

Γ+(x−m)|µ〉
∏

m1<m2,m1∈D−,m2∈D+

(1− x+
m2
x−m1

)−1 ,

= t−|λ|Zν(t, q)
∑

η

sλt/η(x
+)sµ/η(x

−)

= t−
|λ|
2 q−

|µ|
2 Zν(t, q)

∑

η

(q
t

)|η|/2
sλt/η(t

−ρq−ν)sµ/η(t
−νt

q−ρ),

where ρ = {−1
2 ,−3

2 ,−5
2 , · · · }.

To convert the above partition function in the diagonal slicing to the partition function

in the perpendicular slicing we multiply by q−n(λt) t−n(µ) [15]. The perpendicular partition
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function is then given by

Pλµν(t, q) = q−n(λt)− |µ|
2 t−n(µ)− |λ|

2 Zν(t, q)
∑

η

(q
t

)|η|/2
sλt/η(t

−ρq−ν)sµ/η(t
−νt

q−ρ) (A.52)

= q−
||λ||2

2 t−
||µt||2

2 Zν(t, q)
∑

η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t
−ρq−ν)sµ/η(t

−νt
q−ρ).

The refined topological vertex is given by

Cλµν(t, q) = qf(ν) tg(ν) q
||λ||2

2
+

||µ||2

2
Pλµν(t, q)

M(t, q)
(A.53)

= qf(ν) tg(ν)
(q
t

) ||µ||2

2
t

κ(µ)
2
Zν(t, q)

M(t, q)

∑

η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t
−ρq−ν)sµ/η(t

−νt
q−ρ)

= qf(ν) tg(ν)
(q
t

) ||µ||2

2
t

κ(µ)
2 Z̃ν(t, q)

∑

η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t
−ρq−ν)sµ/η(t

−νt
q−ρ).

The functions f(ν) and g(ν) are such that

f(ν) + g(ν) = ||ν||2

2 . (A.54)

This one relation is not enough to fix the two functions f(ν) and g(ν) therefore we will

make a choice here and take g(ν) = 0. The one partition topological vertex is equal to a

specialization of the Schur function, sνt(q−ρ), and with the above choice of g(ν) the one

partition refined topological vertex is equal to the generalization of the Schur function,

C∅ ∅ ν(t, q) = q
||ν||2

2 Z̃ν(t, q)





= q
κ(ν)

2 Qν(q
−ρ; t, q),

=
(

q
t

) ||ν||2

2
Pνt(t−ρ; q, t) .

(A.55)

where Pν(x; q, t) is the Macdonald function and Qν(x; q, t) is dual of the Macdonald func-

tion. As we will show in the next section this choice gives correct A-model partition

functions. The refined vertex becomes,

Cλ µ ν(t, q) =
(q
t

) ||µ||2+||ν||2

2
t

κ(µ)
2 Pνt(t−ρ; q, t)

∑

η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t
−ρq−ν)sµ/η(t

−νt
q−ρ)

For t = q the above reduces to the usual topological vertex since Pν(q
−ρ; q, q) = sν(q

−ρ).

A.7 Framing factors

Recall that the framing factor arises whenever the P1 along which the two vertices are

glued has a global geometry other than O(−1)⊕O(−1) 7→ P1. For q = t the framing factor

is given by q−
κ(µ)

2 .

Since the two directions orthogonal to the preferred direction correspond to the pa-

rameters t and q therefore rotations along these directions will be counted with these two
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parameters. Rotating the ν diagram along the first row gives n(ν) extra boxes which we

count with the parameter t. Then, rotating the diagram along the first column gives n(νt)

boxes which we count with the parameter q. Thus, the framing factor along the preferred

direction is given by

fν(t, q) := (−1)|ν| tn(ν) q−n(νt) = (−1)|ν|
( t
q

)n(ν)
q−

κ(ν)
2 , (A.56)

where we have introduced a factor of (−1)|ν| for later convenience.

The framing factor when t 6= q can also be calculated from the geometry of instanton

moduli spaces following [28]. The simplest case is to take the U(1) theory with the charge

k instanton moduli space given by Symk(C2) and consider a supersymmetric quantum

mechanics on this moduli space with coupling to an external gauge field. A shown in [28]

the effect of this extra coupling is to introduce an extra term, which is the framing factor,

in the partition function given by

e
P

(i,j)∈ν(ǫ1(i−1)+ǫ2(j−1)) = t
P

(i,j)∈ν(i−1) q−
P

(i,j)∈ν(j−1) (A.57)

= tn(ν)q−n(νt) .

This is exactly the framing factor one gets from the combinatorics of 3D partitions.

B Gromov-Witten theory and refined partition function: the case of

O(−1) ⊕ O(−1) 7→ P1

It is interesting to consider the case of O(−1) ⊕ O(−1) 7→ P1 from the point of view of

Gromov-Witten theory [20]. In this case the refined partition function can be obtained

from the Gromov-Witten theory and has a interesting interpretation from the localization

point of view which might be useful for other toric CY3-folds.

The multi-cover contribution is given by [20]

C(g, d) =

∫

[Mg,0(P1,d)]vir

ctop(R1π∗µ
∗N) (B.1)

= d2g−3 |B2g(2g − 1)|
(2g)!

, g ≥ 0 .

Where Bn are Bernoulli numbers defined as
∑

m≥0
Bm
m! t

m = t
et−1 .

The partition function can be calculated using the multicover contribution and is

given by

Z = Exp


∑

g≥0

∑

d≥1

λ2g−2
s QdC(g, d)


 =

∞∏

n=1

(1− qnQ)−n , q = e−λs . (B.2)

However, using localization C(g, d) can also be written as [20, 21]

C(g, d) = d2g−3
∑

g1+g2=g,g1,2≥0

Cg1,g2 , Cg1,g2 = bg1bg2 (B.3)

bg =

{
1, for g = 0∫
Mg,1

ψ2g−2
1 λg = 22g−1−1

22g−1
|B2g|
(2g)! , for g ≥ 1 .
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Essentially the contribution bg1bg2 is from degenerate worldsheets of genus g1+g2 such that

the two components of genus g1 and g2 map to the two fixed points of X. By weighing the

contribution the two fixed points differently we get

Ẑ = Exp


 ∑

g1,g2≥0

λ2g1−1
1 λ2g2−1

2 Qd d2g−3 bg1bg2


 (B.4)

=
∞∏

n,m=1

(
1− qn− 1

2 tm− 1
2 Q
)
, q = e−λ1 , t = e−λ2 .

Which is exactly the refined topological string partition function.

A similar calculation for the case of target space C3 gives the constant map contribution

to the topological string partition function, i.e., the MacMahon function.

Cg :=

∫

Mg

λ3
g−1 =

|B2g−2|
2g − 2

∑

g1+g2=g

bg1bg2 (B.5)

= |ζ(3− 2g)|
∑

g1+g2=g

bg1bg2 =
∑

g1+g2=g

Ĉg1,g2 ,

Ĉg1,g2 = |ζ(3− 2g1 − 2g2)| bg1 bg2

whereBn is the nth Bernoulli number and we have used the identity Bn = (−1)n+1n ζ(1−n).

M(q)=Exp


∑

g≥0

λ2g−2Cg


=

∏

n≥1

(1− qn)−n
⇛ M̃(t, q) = Exp


 ∑

g1,g2≥0

λ2g1−1
1 λ2g2−1

2 Ĉg1,g2




=
∏

n,m≥1

(1− qn− 1
2 tm− 1

2 )−1 .

The function M(q) is the MacMahon function and is the generating function of the number

of 3D partitions,

M(q) =
∞∑

n=0

p(n) qn (B.6)

p(n) = # of plane partitions of n .

The function M̃ (t, q) also has a combinatorial interpretation in terms of 3D partitions,

M̃(t, q) =
∑

π

p(|π+|, |π−|)t|π+|q|π−| , (B.7)

where π+ and π− are two parts of the 3D partition π obtained by cutting π by the plane

x = y. |π+| and |π−| are the volumes of the two parts such that |π+| + |π−| = |π| and

p(n,m) is the number of 3D partitions with (|π+|, |π−|) = (n,m).

C An important identity

In this appendix we prove the identity

Z̃ν(t, q) =
Zν(t, q)

M(t, q)
. (C.1)
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Proof. Consider the following identity [10]

∞∑

i,j=1

(
ti−ν1,jqj−νt

2,i−1 − tiqj−1
)

=
∑

s∈ν1

t−ℓν1(s)q−aν2 (s)−1 +
∑

s∈ν2

tℓν2(s)+1qaν1 (s). (C.2)

Let us set ν1 = ν2 = νt

∞∑

i,j=1

(
ti−νt

jqj−νi−1 − tiqj−1
)

=
∑

s∈νt

(
t−ℓνt (s)q−aνt (s)−1 + tℓνt (s)+1qaνt (s)

)

=
∑

s∈ν

(
t−aν(s)q−ℓν(s)−1 + taν(s)+1qℓν(s)

)
. (C.3)

The substitutions q → qm and t→ tm will allow us to find a formal expansion of log:

∞∑

m=1

1

m

∞∑

i,j=1

tm(i−νt
j)qm(j−νi−1) −

∞∑

m=1

1

m

∑

(i,j)∈ν

tm(i−νt
j)qm(j−νi−1) (C.4)

=

∞∑

m=1

1

m

∞∑

i,j=1

tmiqm(j−1) +

∞∑

m=1

1

m

∑

s∈ν

tm(aν (s)+1)qmℓν(s).

If the order of the m−summation is changed with the one following it, one actually

gets the identity we are trying to prove:

∞∑

i,j=1

log
(
1− ti−νt

jqj−νi−1
)
−

∑

(i,j)∈ν

log
(
1− ti−νt

jqj−νi−1
)

(C.5)

=

∞∑

i,j=1

log
(
1− tiqj−1

)
+
∑

s∈ν

log
(
1− taν(s)+1qℓν(s)

)
.

This can be put in a more suggestive form by exponentiating both sides and taking

the inverse

∏∞
i,j=1

(
1− ti−νt

jqj−νi−1
)−1

∏
(i,j)∈ν

(
1− ti−νt

jqj−νi−1
)−1 =

∏

(i,j)/∈ν

(
1− ti−νt

jqj−νi−1
)−1

(C.6)

=

∞∏

i,j=1

(
1− tiqj−1

)−1∏

s∈ν

(
1− taν(s)+1qℓν(s)

)−1
.

D Schur functions

This appendix should serve as a review of the definition and some properties we have used of

the Schur functions. Before defining the Schur function, let us introduce the antisymmetric

polynomial aα of a finite number of variables {xi}ni=1:

aα(x1, . . . , xn) =
∑

ω∈Sn

ǫ(ω) ω(xα) (D.1)
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where ǫ(ω) serves as the antisymmetrizer for an element ω of the symmetric group Sn

and xα is a shorthand notation for the monomial xα1
1 . . . xαn

n . We have a non-vanishing

polynomial aα(xi) only if all αi’s are different. That allows us to put the exponents of the

variables, without loss of generality, into a particular ordering: α1 > α2 > · · · > αn ≥ 0.

The freedom of choosing such an ordering among αi’s enables us to connect the polynomials

aα(xi) to partitions, so we can write α = λ+ δ for a partition λ with length ℓ(λ) ≤ n and

δ = (n − 1, n − 2, . . . , 1, 0). The polynomial aα(xi) can be now rewritten in terms of the

partition λ as

aλ+δ(x1, . . . , xn) =
∑

ω

ǫ(ω) ω(xλ+δ). (D.2)

This particular form of the polynomial aα(xi) makes it more evident to express this sum

as a determinant

aλ+δ(x1, . . . , xn) = det
(
x

λj+n−j
i

)
1≤i,j≤n

. (D.3)

This form of aα(xi) makes it evident that it is divisible in the ring of polynomials in

the variables {xi}ni=1 with integer coefficients, Z[x1, . . . , xn], by any difference of the form

xi − xj with 1 ≤ i < j ≤ n. Then it is divisible by their product as well, hence, by the

Vandermonde determinant
∏

1≤i<j≤n

(xi − xj) = det
(
xn−j

i

)
. (D.4)

Let us denote the above product by aδ. Now we are ready to define the Schur function

sλ(xi) as a quotient

sλ(x1, . . . , xn) ≡ aλ+δ/aδ. (D.5)

Note that sλ(xi) is symmetric and its definition makes sense as long as λ ∈ Zn is an integer

vector such that λ+δ does not have any negative parts. The Schur functions sλ(xi) form an

orthonormal basis for the symmetric polynomials which is a subring Λn = Z[x1, . . . , xn]Sn .

The orthonormality requires the definition of the scalar product of symmetric functions.

Let us give first the definition and describe later the individual ingredients we use. The

scalar product on Λ is a Z-valued bilinear form 〈u, v〉 such that the bases hλ and mµ are

dual to each other which is precisely that they satisfy the following relationship:

〈hλ,mµ〉 = δλµ (D.6)

with the Kronecker delta δλµ. Given a partition λ, mλ is defined as the sum over all

permutations of the parts of λ = (λ1, . . . , λn)

mλ(x1, . . . , xn) =
∑

α

xα. (D.7)

hλ is defined in terms of the complete symmetric functions hr as hλ = hλ1hλ2 . . . , with

hr =
∑

|λ|=r

mλ (D.8)
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where r is the degree of hr. Finally, Λ is the free Z module which is generated by the bases

mλ for all λ. Any symmetry function can be written as a linear combination of the Schur

functions with the coefficients calculable having the scalar product defined.

The skew Schur function sλ/µ is defined by

〈sλ/µ, sν〉 = 〈sλ, sµsν〉 (D.9)

where λ interlaces µ. We can use the fact that the Schur functions form an orthonormal

basis and write the skew Schur function in another form

sλ/µ =
∑

ν

cλµνsν (D.10)

where the cλµν ’s are defined by

sµsν =
∑

λ

cλµνsλ (D.11)

and are integers. An equivalent definition of the skew Schur function can be given in terms

of the semi-standard tableau, which is obtained by assigning a positive integer to each box

in a skew partition such that the numbers weakly increase along the rows, and strictly

increase along the columns.

Having introduced the Schur and skew Schur functions, let us also mention the iden-

tities we have made use of. If we sum two Schur functions with two sets of independent

variables x = (x1, x2, . . . ) and y = (y1, y2, . . . ) over all partitions, we get
∑

λ

sλ(x)sλ(y) =
∏

i,j

(1− xiyj)
−1. (D.12)

Had we changed the partition from λ to λt in one of the Schur functions, we would end

up with
∑

λ

sλt(x)sλ(y) =
∏

i,j

(1 + xiyj). (D.13)

The Schur function of the variables (1, q, q2, . . . ) can be expressed in terms of a product of

terms which are dependent on the hook length of the partition up to an overall factor:

sλ(1, q, q2, · · · ) = qn(λ)
∏

s∈λ

(1− qhλ(s))−1 (D.14)

where n(λ) is defined as

n(λ) ≡
∑

i

(i− 1)λi. (D.15)

It is not hard to show that n(λ) can be calculated alternatively using the arm length as

well as the leg lengths:

n(ν) =
∑

i

(i− 1)νi =
1

2

∑

i

νt
i (ν

t
i − 1) =

∑

s∈ν

a′(s) =
∑

s∈ν

aν(s) , (D.16)

n(νt) =
∑

i

(i− 1)νt
i =

1

2

∑

i

νi(νi − 1) =
∑

s∈ν

ℓ′(s) =
∑

s∈ν

ℓν(s) , (D.17)
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with the same ℓν(s) and aν(s) defined previously in the text, and we introduce ℓ′(s) = j−1

and a′(s) = i− 1.10

Two skew Schur functions sλ/ν(x) and sν/µ(y) can be summed over all possible parti-

tions satisfying µ ≺ ν ≺ λ to give another skew Schur function

sλ/µ(x, y) =
∑

ν

sλ/ν(x)sν/µ(y). (D.18)

The above sum can be generalized to multiple sums in the following way

sλ/µ(x(1), . . . , x(n)) =
∑

(ν)

n∏

i=1

sν(i)/ν(i−1)(x(i)) (D.19)

where the summation is again over all partitions (ν) = (ν(0), . . . , ν(n)) satisfying the same

interlacing condition generalized to more partitions, µ = ν(0) ≺ ν(1) ≺ · · · ≺ ν(n−1) ≺
ν(n) = λ.
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